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ECE4960 Fast Robots

• Contact Sensors: Bumpers

• Internal Sensors
• Accelerometers (spring-mounted masses)
• Gyroscopes (spinning mass, laser light)
• Compasses, inclinometers (earth magnetic field, gravity)

• Proximity Sensors
• Sonar (time of flight)
• Radar (phase and frequency)
• Laser range finders (triangulation, tof, phase)
• Infrared (intensity)

• Visual Sensors: Cameras

• Satellite-based sensors: GPS

Sensors for Mobile Robots
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Probabilistic Sensor Model
𝑝(𝑧|𝑥)
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Bayes Filter

xt-1

1. 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐁𝐚𝐲𝐞𝐬_𝐅𝐢𝐥𝐭𝐞𝐫 𝑏𝑒𝑙 𝑥𝑡−1 , 𝑢𝑡 , 𝑧𝑡 :

2. for all 𝑥𝑡 do

3. 𝑏𝑒𝑙 𝑥𝑡 = σ𝑥𝑡−1 𝑝(𝑥𝑡|𝑢𝑡, 𝑥𝑡−1) 𝑏𝑒𝑙 𝑥𝑡−1

4. 𝑏𝑒𝑙 𝑥𝑡 = 𝜂 𝑝(𝑧𝑡|𝑥𝑡) 𝑏𝑒𝑙 𝑥𝑡

5. endfor

6. return 𝑏𝑒𝑙 𝑥𝑡

[ Prediction Step ]

[ Update/Measurement Step ]

Measurement Probability / Sensor Model
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ECE4960 Fast Robots

• Probabilistic robotics explicit models the noise in sensor measurements

• Sensor Model discussions are based on range sensors but can be easily transferred to other 
types of sensors

• The central task is to determine 𝑝(𝑧|𝑥), i.e., the probability of a measurement 𝑧 given that the 
robot is at position 𝑥

Where do the probabilities come from?

Sensor Model
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• A smooth surface acts like a mirror (specular) to 
a range sensor such as an ultrasonic range 
sensor

• This can be problematic when rays hit at an 
angle; can lead to larger measurements than 
true values

• The inability to reliably measure range to nearby 
objects is often paraphrased at sensor noise

Range Sensor

α

sensor

smooth 
object 
surface

specular 
reflection

main cone
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• Larger readings occur due to:

• Surface material

• Angle between surface normal and direction of sensor cone

• Range of the surface

• Width of the sensor cone of measurement

• Sensitivity of the sensor cone

• Shorter readings may be caused due to

• crosstalk between different sensors 

• unmodeled objects in the proximity of the robot, such as people

Range Sensor Inaccuracies
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• A sensor cannot be modelled accurately primarily due to complexity of the physical 
phenomena

• The response characteristics of a sensor depends on variables we prefer not make 
explicit in a probabilistic robotics algorithm (such as the surface properties of a 
material)

• Instead, it accommodates inaccuracies of sensor models in the stochastic aspects by 
modelling the measurement process as a conditional distribution density 𝑝(𝑧|𝑥)
instead of a deterministic function 𝑧 = 𝑓(𝑥)

Probabilistic Sensor Model
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• Beam Model

• Likelihood Model

• Feature Based Model

Types of sensor models
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• Also known as the normal distribution or the “bell 

curve”

• Defined by two parameters:

• mean μ

• standard deviation σ

• Given a data point 𝑥, we can get how “probable” 

(relative likelihood) the value is in the gaussian 

distribution for a given mean and standard 

deviation using the probability density function 

𝑓 𝑥 𝜇, 𝜎2 or𝒩(𝜇, 𝜎2)

• Can be defined for multidimensional data

Quick Detour: Gaussian Distribution

1D Gaussian Probability Density Function 

𝑓 𝑥 𝜇, 𝜎2 =
1

2𝜋𝜎2
𝑒
−
(𝑥−𝜇)2

2𝜎2
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Quick Detour: Gaussian Distribution

Gaussian curves with a two-

dimensional domain 11



Beam Model
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• Let there be 𝐾 individual measurement values within a measurement 𝑧𝑡

𝑧𝑡 = {𝑧𝑡
1, 𝑧𝑡

2… , 𝑧𝑡
𝐾}

• Individual measurements are independent given the robot state

𝑝 𝑧𝑡 𝑥𝑡, 𝑚) = ෑ

𝑘=1

𝐾

𝑝 𝑧𝑡
𝑘 𝑥𝑡, 𝑚)

• Dependencies exist due to a range of factors: people, error in the map model m, 
approximations in the posterior, etc

NOTE: Technically sensor measurements are caused by physical objects in the real world and not the map, 
however,  traditionally sensor models are conditioned on the map m

Beam Model of Range Finders
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Typical Measurement Errors of an Range Measurements
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1. Correct Range Measurements: 

Beams reflected by obstacles

2. Unexpected Objects:  Beams 

reflected by persons / caused by 

crosstalk

3. Failures

4. Random measurements

Typical Measurement Errors of an Range Measurements
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• Let 𝑧𝑡
𝑘∗ denote the “true” range of the 

object measured by 𝑧𝑡
𝑘

• Given a location-based map, the true value 
is usually estimated by ray casting

• The value returned by the sensor is subject 
to error, due to limited resolution, 
atmospheric effects, etc

• Measurement noise modelled by a narrow 
Gaussian 𝑝ℎ𝑖𝑡 with mean 𝑧𝑡

𝑘∗ and standard 
deviation 𝜎ℎ𝑖𝑡

1. Correct Range Measurements 

zt
k* zmax0

𝑝ℎ𝑖𝑡 𝑧𝑡
𝑘 𝑥𝑡, 𝑚) = ቊ

𝜂𝒩 𝑧𝑡
𝑘; 𝑧𝑡

𝑘∗, 𝜎ℎ𝑖𝑡 𝑖𝑓 0 ≤ 𝑧𝑡
𝑘 ≤ 𝑧𝑚𝑎𝑥

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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• Real world can be dynamic

• Objects not contained in the map can cause 
range finders to produce surprisingly short 
ranges (ex: people)

• Either

• treat them as part of the state vector and 
estimate their location (or) 

• treat them as noise

• The likelihood of sensing unexpected objects 
decreases with range

• Model using an exponential distribution 𝑝𝑠ℎ𝑜𝑟𝑡

2. Unexpected Objects

zt
k* zmax0

𝑝𝑠ℎ𝑜𝑟𝑡 𝑧𝑡
𝑘 𝑥𝑡, 𝑚) = ൝ 𝜂 𝜆𝑠ℎ𝑜𝑟𝑡 𝑒

−𝜆𝑠ℎ𝑜𝑟𝑡 𝑧𝑡
𝑘

𝑖𝑓 0 ≤ 𝑧𝑡
𝑘 ≤ 𝑧𝑡

𝑘∗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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• Obstacles might be missed altogether 

• in sonar sensors as a result of specular 

reflections

• in laser sensors when sensing black 

surfaces

• The result is a max-range measurement 𝑧𝑚𝑎𝑥

• Model as a point-mass distribution 𝑝𝑚𝑎𝑥

3. Failures

zt
k* zmax0

𝑝𝑚𝑎𝑥 𝑧𝑡
𝑘 𝑥𝑡, 𝑚) = 𝐼(𝑧 = 𝑧𝑚𝑎𝑥) = ቊ

1 𝑖𝑓 𝑧 = 𝑧𝑚𝑎𝑥

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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• Range finders can occasionally produce 

entirely unexplainable measurements 

due to phantom readings, cross-talks, 

etc

• Modelled as a uniform distribution 

𝑝𝑟𝑎𝑛𝑑 spread over the measurement 

range

4. Random Measurements

zt
k* zmax0

𝑝𝑟𝑎𝑛𝑑 𝑧𝑡
𝑘 𝑥𝑡, 𝑚) = ൝

1
𝑧𝑚𝑎𝑥

𝑖𝑓 0 ≤ 𝑧𝑡
𝑘 ≤ 𝑧𝑚𝑎𝑥

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Beam Range Model as a Mixture Density

zt
k* zmax0

z
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• The four different distributions are now 
mixed by a weighted average, defined 
by the parameters 𝛼ℎ𝑖𝑡  , 𝛼𝑠ℎ𝑜𝑟𝑡  ,
𝛼𝑚𝑎𝑥  ,𝛼𝑟𝑎𝑛𝑑 s.t:

𝛼ℎ𝑖𝑡 + 𝛼𝑠ℎ𝑜𝑟𝑡 + 𝛼𝑚𝑎𝑥 + 𝛼𝑟𝑎𝑛𝑑 = 1

Beam Range Model as a Mixture Density

zt
k* zmax0

𝑝 𝑧𝑡
𝑘 𝑥𝑡, 𝑚) =

𝛼ℎ𝑖𝑡
𝛼𝑠ℎ𝑜𝑟𝑡
𝛼𝑚𝑎𝑥

𝛼𝑟𝑎𝑛𝑑

. 

𝑝ℎ𝑖𝑡 𝑧𝑡
𝑘 𝑥𝑡, 𝑚)

𝑝𝑠ℎ𝑜𝑟𝑡 𝑧𝑡
𝑘 𝑥𝑡, 𝑚)

𝑝𝑚𝑎𝑥 𝑧𝑡
𝑘 𝑥𝑡 , 𝑚)

𝑝𝑟𝑎𝑛𝑡 𝑧𝑡
𝑘 𝑥𝑡, 𝑚)
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Algorithm for Beam Model

1. 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐛𝐞𝐚𝐦_𝐫𝐚𝐧𝐠𝐞_𝐟𝐢𝐧𝐝𝐞𝐫_𝐦𝐨𝐝𝐞𝐥 𝑧𝑡 , 𝑥𝑡 , 𝑚 :

2. 𝑞 = 1

3. for 𝑘 = 1 𝑡𝑜 𝐾 𝑑𝑜

4. compute 𝑧𝑡
𝑘∗ for the measurement 𝑧𝑡

𝑘 using ray casting

5. 𝑝 = 𝛼ℎ𝑖𝑡. 𝑝ℎ𝑖𝑡 𝑧𝑡
𝑘 𝑥𝑡 , 𝑚) + 𝛼𝑠ℎ𝑜𝑟𝑡 . 𝑝𝑠ℎ𝑜𝑟𝑡 𝑧𝑡

𝑘 𝑥𝑡, 𝑚)

6. + 𝛼𝑚𝑎𝑥. 𝑝𝑚𝑎𝑥 𝑧𝑡
𝑘 𝑥𝑡, 𝑚) + 𝛼𝑟𝑎𝑛𝑑 . 𝑝𝑟𝑎𝑛𝑑 𝑧𝑡

𝑘 𝑥𝑡, 𝑚)

7. 𝑞 = 𝑞. 𝑝

8. return 𝑞
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• Intrinsic Parameters Θ of the beam range model include 𝛼ℎ𝑖𝑡  , 𝛼𝑠ℎ𝑜𝑟𝑡  ,𝛼𝑚𝑎𝑥  ,𝛼𝑟𝑎𝑛𝑑 , 

𝜆𝑠ℎ𝑜𝑟𝑡

• Likelihood of any sensor measurement is a function of Θ

• Estimation Methods:

• We can guesstimate the resulting density until it agrees with experience

• Learn parameters using a Maximum Likelihood Estimator that maximizes the 

likelihood of data for the intrinsic parameter

• Other methods to estimate parameters: Hill Climbing, Gradient descent, Genetic 

algorithms, etc

Parameters of Beam Range Model
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Raw Sensor Data

Typical data obtained with (a) a sonar sensor and (b) a laser-range sensor in an office 
environment for a “true” range of 300 cm and a maximum range of 500 cm

(a) (b)

24



Approximation Results of Beam Model

Sonar
Data

Laser
Data

300 cm

Depicts four examples of data and ML measurement models calculated using a maximum likelihood estimation method. 

The left images depict the data from the previous slide.

300 cm

400 cm

400 cm
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Learned Probabilistic Sensor Model in Action

(a) Laser scan projected into a 
previously acquired map 𝑚.
(Only a portion of the map is 
depicted)

(b) Likelihood 𝑝(𝑧𝑡|𝑥𝑡 , 𝑚) evaluated for all positions 𝑥𝑡 and 
projects into the map (shown in gray). The darker a position, 
the larger 𝑝(𝑧𝑡|𝑥𝑡 , 𝑚)

26
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• Overconfident: Assumes independence between beams

• Models physical causes for measurements

• Implementation involves learning parameters based on real data

• Limitations:

• Different models should be learned for different angles at which the sensor beam 

hits the obstacle

• Determine expected distances by ray-tracing is computationally expensive

• Expected distances can be pre-processed

• Not smooth for small obstacles, at edges and in cluttered environments

Summary of Beam Model
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Likelihood Fields
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• Lacks a plausible physical explanation

• No generative model derived from physical interactions to calculate the conditional 
probability from

• Overcomes some of the limitations of the Beam model

• Instead of following along the beam, just check the end point

• Project sensor scan zt into the map

• Requires knowledge of the robot pose in a global coordinate frame 

• Requires knowledge of the sensor beam pose relative to the robot frame

Likelihood Fields of Range Finders
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Measurement Noise

o1 o2 o3 zmax
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• Modelled using Gaussians

• In xy space, this involves finding the nearest obstacle in the map

• If dist denotes euclidean distance between measurement coordinates and nearest object in 
the map m, then probability of a sensor measurement is given by the Gaussian 𝒩 0, 𝑑𝑖𝑠𝑡

Measurement Noise

(a) Example environment with three obstacles (gray), Robot takes a measurement 𝑧𝑘
𝑡 (dashed line)

(b) Likelihood filed for this obstacle configuration: darker a location, less likely it is to perceive an obstacle there
(c) Probability 𝑝ℎ𝑖𝑡(𝑧𝑘

𝑡) as a function of the measurement 𝑧𝑘
𝑡  . The sensor beam passes by three obstacles with respective nearest 

points 𝑜1, 𝑜2, 𝑜3

o1 o2 o3 zmax
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• Robot pose 𝑥𝑡 = 𝑥, 𝑦, 𝜃 𝑇

• Relative location of the sensor in the robot’s frame as (𝑥𝑘,𝑠𝑒𝑛𝑠 , 𝑦𝑘,𝑠𝑒𝑛𝑠) and the angle of 

orientation w.r.t. robot’s heading direction as 𝜃𝑘,𝑠𝑒𝑛𝑠

• “End points” of the measurement 𝑧𝑡
𝑘 in the global coordinate frame:

• Likelihood model rejects measurements 𝑧𝑡
𝑘 = 𝑧𝑚𝑎𝑥

Likelihood Fields for Range Finders

𝑥𝑧𝑡𝑘

𝑦𝑧𝑡𝑘
=

𝑥𝑧𝑘
𝑡

𝑦𝑧𝑘
𝑡

+
cos(𝜃)𝑧𝑘

𝑡 −sin(𝜃)

sin(𝜃)𝑧𝑘
𝑡 cos(𝜃)

𝑥𝑘,𝑠𝑒𝑛𝑠

𝑦𝑘,𝑠𝑒𝑛𝑠𝑧𝑘
𝑡 + 𝑧𝑡

𝑘
cos(𝜃 + 𝜃𝑘,𝑠𝑒𝑛𝑠)

𝑧 sin(𝜃 + 𝜃𝑘,𝑠𝑒𝑛𝑠)𝑘
𝑡
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• Independence between different individual measurement values is assumed

• Three types of sources of noise and uncertainty:

• Measurement Noise

• Failures

• Unexplained Random Measurements

Likelihood Fields of Range Finders

33



2. Failures: As before, assume that max range readings have a distinct large likelihood modelled 
by a point-mass distribution 

3. Unexplained Random Measurements: A uniform distribution is used to model random noise in 
perception

Failures and Random Measurements

o
1

o
2

o
3

zmax
o
1

o
2

o
3

zmax

(a) Probability 𝑝ℎ𝑖𝑡(𝑧𝑘
𝑡) as a function of the measurement 𝑧𝑘

𝑡  .The sensor beam passes by three obstacles with 

respective nearest points 𝑜1, 𝑜2, 𝑜3
(b) Sensor probability obtained for the situation depicted in the previous slide by incorporating for failures and random 

measurements 34



Algorithm for Beam Model

1. 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐥𝐢𝐤𝐞𝐥𝐢𝐡𝐨𝐨𝐝_𝐟𝐢𝐞𝐥𝐝_𝐫𝐚𝐧𝐠𝐞_𝐟𝐢𝐧𝐝𝐞𝐫_𝐦𝐨𝐝𝐞𝐥 𝑧𝑡 , 𝑥𝑡 , 𝑚 :

2. 𝑞 = 1

3. for 𝑘 = 1 𝑡𝑜 𝐾 𝑑𝑜

4. 𝑥𝑧𝑡𝑘
= 𝑥 +𝑥𝑘,𝑠𝑒𝑛𝑠 cos 𝜃 − 𝑦𝑘,𝑠𝑒𝑛𝑠 sin 𝜃 + 𝑧𝑡

𝑘cos(𝜃 + 𝜃𝑘,𝑠𝑒𝑛𝑠)

5. 𝑦𝑧𝑡𝑘
= 𝑦 +𝑦𝑘,𝑠𝑒𝑛𝑠 cos 𝜃 + 𝑥𝑘,𝑠𝑒𝑛𝑠 sin 𝜃 + 𝑧𝑡

𝑘sin(𝜃 + 𝜃𝑘,𝑠𝑒𝑛𝑠)

6. 𝑑𝑖𝑠𝑡 = min
𝑥′,𝑦′

(𝑥𝑧𝑡
𝑘 − 𝑥′)2 + (𝑦𝑧𝑡

𝑘 − 𝑦′)2 | 𝑥′, 𝑦′ occupied in 𝑚

7. 𝑞 = 𝑞. (𝑧ℎ𝑖𝑡 . 𝒩 𝑑𝑖𝑠𝑡; 0, 𝜎ℎ𝑖𝑡 +
𝑧𝑟𝑎𝑛𝑑

𝑧𝑚𝑎𝑥
) 

8. return 𝑞
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Likelihood Field from Sensor Data

(a) (b)

(a) Sensor data consisting of 180 dots visualized from a bird’s eye perspective
(b) Likelihood function generated from this sensor scan (darker a region, smaller the 
likelihood for sensing an object there. 36
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San Jose Tech Museum

Occupancy grid map Likelihood field
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• Probability is a mixture of:

• a Gaussian distribution with mean at distance to closest obstacle

• a uniform distribution for random measurements, and

• a small uniform distribution for max range measurements.

• Again, independence between different components is assumed.

Summary of Likelihood Fields
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• Advantages:

• Highly efficient, computation in 2D instead of 3D

• Smooth w.r.t. to small changes in robot position (due to euclidean distance)

• Limitations:

• Does not model people and other dynamics that might cause short readings

• Ignores physical properties of beams: Model can “see through walls” as likelihood 
fields are incapable of determining whether a path to a point is intercepted by an 
obstacle in the map

Summary of Likelihood Fields

39



Feature Based Models

40
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• Sensor models discussed so far are based on raw sensor measurements

• Alternative approach is to extract features (usually smaller in number) from dense raw 
measurements

• Inference in the (sparser) feature space can be more efficient

• For range sensors, features such as lines, corners, etc may be extracted

• Myriad of feature extraction methods from camera images (edges, corners, distinct 
patterns, etc)

• In robotics, features correspond to distinct physical objects in the real world and are 
often referred to as landmarks

Feature Based Models

41
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• Sensors (generally) measure the range (distance) and bearing (angle) of the landmark 
w.r.t to the robot’s frame

• Active beacons (e.g., radio, GPS)

• Passive (e.g., visual, retro-reflective)

• Sensors may provide:

• Range

• Bearing

• Range and Bearing

Landmarks

42
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Trilateration using Range Measurements

43
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Range and Bearing Distributions

44
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• Explicitly modeling uncertainty in sensing is key to robustness

• In many cases, good models can be found by the following approach:

1. Determine parametric model of noise free measurement

2. Analyze sources of noise

3. Add adequate noise to parameters (eventually mix in densities for noise)

4. Learn (and verify) parameters by fitting model to data

5. Likelihood of measurement is given by “probabilistically comparing” the actual with the 
expected measurement

• This holds for motion models as well

• It is extremely important to be aware of the underlying assumptions!

Summary of Sensor Models
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1. Thrun, Sebastian, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT press, 2005.

2. http://ais.informatik.uni-freiburg.de/teaching/ss10/robotics/slides/07-sensor-models.pdf

3. http://www.cs.cmu.edu/~16831-f14/notes/F12/16831_lecture03_mtaylormshomin.pdf

4. Gaussian Distribution: https://www.asc.ohio-state.edu/gan.1/teaching/spring04/Chapter3.pdf

5. Gaussian Distribution:  

http://www2.stat.duke.edu/~rcs46/modern_bayes17/lecturesModernBayes17/lecture-3/03-normal-

distribution.pdf

6. Visual Demos:

1. Prof. Fred Martin: https://www.youtube.com/watch?v=u293629ZwIo

2. Prof. Myriam Hunink: https://vimeo.com/236607953

Reference
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