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Probabilistic Motion Model
𝑝 𝑥𝑡 𝑢𝑡 , 𝑥𝑡−1)
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Bayes Filter

xt-1

1. 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐁𝐚𝐲𝐞𝐬_𝐅𝐢𝐥𝐭𝐞𝐫 𝑏𝑒𝑙 𝑥𝑡−1 , 𝑢𝑡 , 𝑧𝑡 :

2. for all 𝑥𝑡 do

3. 𝑏𝑒𝑙 𝑥𝑡 = σ𝑥𝑡−1 𝑝(𝑥𝑡|𝑢𝑡, 𝑥𝑡−1) 𝑏𝑒𝑙 𝑥𝑡−1

4. 𝑏𝑒𝑙 𝑥𝑡 = 𝜂 𝑝(𝑧𝑡|𝑥𝑡) 𝑏𝑒𝑙 𝑥𝑡

5. endfor

6. return 𝑏𝑒𝑙 𝑥𝑡

[ Prediction Step ]

Transition Probability / Action Model
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• Robot motion is inherently uncertain.

• How can we model this uncertainty?

Robot Motion

4



ECE4960 Fast Robots

Robot Motion

5

- Trajectory estimated using on-board sensors
- Ground truth trajectory
- Trajectory estimated using Bayes Filter



Some reasons for Motion Errors

bump

ideal case
different wheel

diameters

carpet

and many more … 6
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• We consider mobile robot kinematics for robots operating in planar environments

• Robot pose 𝑥𝑡 = 𝑥, 𝑦, 𝜃 𝑇

• Can be easily extended to other types of mobile robots or manipulators

Probabilistic Motion Model
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• Generalizes kinematic equations to the fact that the outcome of a control action is 

uncertain, due to control noise or other non-modelled external factors

• To implement the Bayes Filter, we need the state transition model 𝑝 𝑥𝑡 𝑢𝑡 , 𝑥𝑡−1)

• 𝑝 𝑥𝑡 𝑢𝑡 , 𝑥𝑡−1) specifies a posterior probability, that action 𝑢𝑡 carries the robot from 

𝑥𝑡 to 𝑥𝑡−1

• How can we model 𝑝 𝑥𝑡 𝑢𝑡 , 𝑥𝑡−1) based on the kinematic equations?

• Two Motion Models:

• Velocity Model

• Odometry Model

Probabilistic Motion Model
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Velocity Model
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Odometry Model Parameters

(x, y)𝑇

(x′, y′)𝑇

(x, y)𝑇

(x′, y′)𝑇

(x, y)𝑇

(x′, y′)𝑇

(x, y)𝑇

(x′, y′)𝑇
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Odometry Model Parameters

(x, y, θ)𝑇

(x′, y′, θ′)𝑇
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Odometry Model Parameters

(x, y, θ)𝑇

(x′, y′, θ′)𝑇
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• The control data ut is specified by 
velocity commands given to the 
robot

• Velocities given to the robot can 
be translational 𝑣𝑡 or rotational 
𝜔𝑡

• Control data 𝑢𝑡 = (𝑣𝑡, 𝜔𝑡)

Velocity Model

13
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• If both velocity components are kept 

at a fixed value for the entire time 

interval t − 1, t then the robot 

moves in a circular with radius r and 

center (𝑥𝑐 , 𝑦𝑐)

• Exact motion 𝑥𝑡 = 𝑥′, 𝑦′, 𝜃′ 𝑇 may be 

calculated given 𝑥𝑡−1 = 𝑥, 𝑦, 𝜃 𝑇 and 

𝑢𝑡 = (𝑣𝑡 , 𝜔𝑡)
𝑇using trigonometric 

equations

Velocity Model
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• The robot moves in exact 
circular paths

• The velocity controls is 2d 
dimensional leading to state 
changes in a 3d pose space

• We perform a final 
orientation 𝛾 when it arrives 
at its final pose 

Velocity Model - Degeneracy
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Probabilistic Motion Model

Algorithm for computing p(xt | ut, xt-1), based on velocity information, where xt-1 = (x, y, θ)T, xt = (x’, y’, θ’)T and ut = (vt, ωt)
T. 

The function prob(a,b2) computes the probability of its argument a under a zero-centered distribution with variance b2. (prob can represented 
by a gaussian or a triangular distribution)

For completeness, the robot performs an 

additional rotation 

Calculate the error-free 

control between the 

states xt-1 and xt
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Typical Distributions for Motion Models

Normal distribution Triangular distribution
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Probabilistic Motion Model

Algorithm for computing p(xt | ut, xt-1), based on velocity information, where xt-1 = (x, y, θ)T, xt = (x’, y’, θ’)T and ut = (vt, ωt)
T. 

The function prob(a,b2) computes the probability of its argument a under a zero-centered distribution with variance b2. (prob can represented 
by a gaussian or a triangular distribution)

For completeness, the robot performs an 

additional rotation 

Calculate the error-free 

control between the 

states xt-1 and xt
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(darker regions are more probable)

The velocity motion model for different noise parameters settings for the same control 
𝑢𝑡 = (𝑣𝑡 , 𝜔𝑡)

𝑇 projected in the x-y space

a) Moderate error parameters

Velocity Motion Model

(a) (c)(b)
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(darker regions are more probable)

The velocity motion model for different noise parameters settings for the same control 
𝑢𝑡 = (𝑣𝑡 , 𝜔𝑡)

𝑇 projected in the x-y space

a) Moderate error parameters

b) Smaller angular error parameters but larger transitional errors

c) Large angular and translational error parameters

Velocity Motion Model

(a) (c)(b)
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(a) Velocity model without a map

(b) Velocity model with a map: 𝑝 𝑥𝑡 𝑢𝑡 , 𝑥𝑡−1, 𝑚) is calculated from the normal product of 

𝑝 𝑥𝑡 𝑢𝑡 , 𝑥𝑡−1) and 𝑝 𝑥𝑡 𝑚). It is zero in the extended obstacle error and 𝑝 𝑥𝑡 𝑢𝑡 , 𝑥𝑡−1) everywhere 

else

Velocity Model with a Map

≠

(a) (b)

𝑝 𝑥𝑡 𝑢𝑡 , 𝑥𝑡−1) 𝑝 𝑥𝑡 𝑢𝑡 , 𝑥𝑡−1, 𝑚)
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• A sampling algorithm is an algorithm that outputs samples y1, y2, . . . from a given 
distribution P

• A sampling algorithm is a procedure that allows us to select randomly a subset of units 
(samples) from a distribution without enumerating all the possible samples of the 
distribution

• Sampling algorithms are often used to approximate distributions

• A triangular distribution is given by:

Sampling

22



Sampling from a Triangular Distribution

103 samples 104 samples

106 samples105 samples 23
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Normally Distributed Samples

106 samples
24



Algorithm for sampling poses xt-1 = (x, y, θ)T, xt = (x’, y’, θ’)T and ut = (vt, ωt)
T. Not we are perturbing the final orientation 

by an additional random term γ. The variables α1 through α6 are parameters of the motion noise. sample(b2) generates 
a random sample from a zero-centered distribution with variance b2

Sampling from Velocity Model
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Sampling from the velocity model, using the same error parameters as in the previous slides with 500 samples in each. 

Sampling from Velocity Model

(c)(b)(a)

(b)(a) (c)
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Odometry Model

27
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• Odometry is the use of data from motion sensors to estimate change in position over 
time

• Uses the odometry measurements as the basis for calculating the robot’s motion over 
time

• Odometry obtained by integrating wheel encoder information

• Hence, odometry model uses odometry information in lieu of velocity controls

Odometry Model

28
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• Practical experience suggests odometry, while still erroneous, is more accurate than 
velocity

• Though both suffer from drift and slippage, velocity model suffers from mismatch 
between actual motion controllers and our crude mathematical model

• However, odometry is available after the robot has moved

• It cannot be used for motion planning algorithms since they need to predict the 
effects of motion

• Can still be used for filter algorithms such as localization and mapping algorithms

• Odometry models are usually applied for estimation while velocity models are used for 
probabilistic motion planning

Odometry Model

29
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• Uses the relative motion information as measured by the robot’s internal odometry

• From (𝑡 − 1, 𝑡], the robot advances from 𝑥𝑡 to 𝑥𝑡−1

• The odometry reports back to us a related advance from 

𝑥𝑡−1 = ( ҧ𝑥, ത𝑦, ҧ𝜃)𝑇 to     ഥ𝑥𝑡 = (ഥ𝑥′, ത𝑦′, ഥ𝜃′)𝑇

(bar indicates they are odometry measurements in the robot’s local frame)

• Key idea: In state estimation, the relative difference between 𝑥𝑡−1 and ഥ𝑥𝑡 is a good 

estimator for the difference of the true poses 𝑥𝑡−1 and 𝑥𝑡

• Motion information is given by:

𝑢𝑡 = ( 𝑥𝑡−1, ഥ𝑥𝑡)
𝑇

Odometry Model

30
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Odometry Model Parameters

( ҧ𝑥, ത𝑦, ҧ𝜃)𝑇

( ҧ𝑥′, ത𝑦′, ഥ𝜃′)𝑇

𝛿𝑟𝑜𝑡1

31
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Odometry Model Parameters

( ҧ𝑥, ത𝑦, ҧ𝜃)𝑇

( ҧ𝑥′, ത𝑦′, ഥ𝜃′)𝑇

𝛿𝑟𝑜𝑡1

𝛿𝑡𝑟𝑎𝑛𝑠

32
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Odometry Model Parameters

( ҧ𝑥, ത𝑦, ҧ𝜃)𝑇

( ҧ𝑥′, ത𝑦′, ഥ𝜃′)𝑇

𝛿𝑟𝑜𝑡2
𝛿𝑡𝑟𝑎𝑛𝑠
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Odometry Model Parameters

( ҧ𝑥, ത𝑦, ҧ𝜃)𝑇

( ҧ𝑥′, ത𝑦′, ഥ𝜃′)𝑇
𝛿𝑡𝑟𝑎𝑛𝑠

𝛿𝑟𝑜𝑡1

𝛿𝑟𝑜𝑡2
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• Relative odometry motion is 
transformed into a sequence of three 
steps:

• Initial rotation 𝛿𝑟𝑜𝑡1

• Translation 𝛿𝑡𝑟𝑎𝑛𝑠

• Final Rotation 𝛿𝑟𝑜𝑡2

• These three parameters are sufficient to 
reconstruct the relative motion between 
two robot states

𝑢𝑡 = (𝛿𝑟𝑜𝑡1, 𝛿𝑡𝑟𝑎𝑛𝑠, 𝛿𝑟𝑜𝑡2)
𝑇

Odometry Model Parameters

( ҧ𝑥, ത𝑦, ҧ𝜃)𝑇

( ҧ𝑥′, ത𝑦′, ഥ𝜃′)𝑇
𝛿𝑡𝑟𝑎𝑛𝑠

𝛿𝑟𝑜𝑡1

𝛿𝑟𝑜𝑡2
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𝛿𝑟𝑜𝑡1 = atan2( ത𝑦′ − ത𝑦, ҧ𝑥′ − ҧ𝑥) − ҧ𝜃

𝛿𝑡𝑟𝑎𝑛𝑠 = (ത𝑦′ − ത𝑦)2+ ( ҧ𝑥′ − ҧ𝑥)2

𝛿𝑟𝑜𝑡2 = ഥ𝜃′ − ҧ𝜃 − 𝛿𝑟𝑜𝑡1

Odometry Model Parameters

( ҧ𝑥, ത𝑦, ҧ𝜃)𝑇

( ҧ𝑥′, ത𝑦′, ഥ𝜃′)𝑇
𝛿𝑡𝑟𝑎𝑛𝑠

𝛿𝑟𝑜𝑡1

𝛿𝑟𝑜𝑡2
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Calculate the relative motion parameters 

from odometry readings

Calculate the relative motion parameters 

for the given states xt-1 and xt

Algorithm for computing 𝑝 𝑥𝑡 𝑢𝑡 , 𝑥𝑡−1) based on 

odometry information. Here the control 𝑢𝑡 = ( 𝑥𝑡−1 , ഥ𝑥𝑡)
𝑇

with  𝑥𝑡−1 = ( ҧ𝑥, ത𝑦, ҧ𝜃)𝑇 and ഥ𝑥𝑡 = (ഥ𝑥′, ത𝑦′, ഥ𝜃′)𝑇

37



Calculate the relative motion parameters 

from odometry readings

Calculate the relative motion parameters 

for the given states 𝑥𝑡−1 and 𝑥𝑡

Algorithm for computing 𝑝 𝑥𝑡 𝑢𝑡 , 𝑥𝑡−1) based on 

odometry information. Here the control 𝑢𝑡 = ( 𝑥𝑡−1 , ഥ𝑥𝑡)
𝑇

with  𝑥𝑡−1 = ( ҧ𝑥, ത𝑦, ҧ𝜃)𝑇 and ഥ𝑥𝑡 = (ഥ𝑥′, ത𝑦′, ഥ𝜃′)𝑇

1. 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐁𝐚𝐲𝐞𝐬_𝐅𝐢𝐥𝐭𝐞𝐫 𝑏𝑒𝑙 𝑥𝑡−1 , 𝑢𝑡 , 𝑧𝑡 :

2. for all 𝑥𝑡 do

3. 𝑏𝑒𝑙 𝑥𝑡 = σ𝑥𝑡−1
𝑝(𝑥𝑡|𝑢𝑡, 𝑥𝑡−1) 𝑏𝑒𝑙 𝑥𝑡−1

4. 𝑏𝑒𝑙 𝑥𝑡 = 𝜂 𝑝(𝑧𝑡|𝑥𝑡) 𝑏𝑒𝑙 𝑥𝑡

5. endfor

6. return 𝑏𝑒𝑙 𝑥𝑡
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Calculate the relative motion parameters 

from odometry readings

Add noise to calculated motion 

parameters 

Calculate the sample state

Algorithm for sampling from 𝑝 𝑥𝑡 𝑢𝑡 , 𝑥𝑡−1)
based on odometry information
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Sampling from the odometry model, using the same error parameters as in the previous slides with 500 samples in each. 

Sampling from Velocity Model

(c)(b)(a)

(b)(a) (c)
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Repeated Sampling from Our Motion Model

Start location

Sampling approximation of the position belief for a non-sensing robot. Solid lines displays the robot’s actual motion and the 

samples represent the robot’s belief at different points in time 41
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• We discussed motion models for odometry-based and velocity-based systems

• We discussed ways to calculate the posterior probability 𝑝 𝑥𝑡 𝑢𝑡 , 𝑥𝑡−1)

• We also described how to sample from 𝑝 𝑥𝑡 𝑢𝑡 , 𝑥𝑡−1)

• Typically the calculations are done in fixed time intervals 𝛥𝑡

• In practice, the parameters of the models have to be learned

• We also briefly discussed an extended motion model that takes the map into account

Summary
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