ECE 4960

Prof. Kirstin Hagelskjær Petersen
kirstin@cornell.edu
Vivek Thangavelu
vs353@cornell.edu

Fast Robots

Probabilistic Motion Model $p\left(x_{t} \mid u_{t}, x_{t-1}\right)$

Bayes Filter

1. Algorithm Bayes_Filter $\left(\operatorname{bel}\left(x_{t-1}\right), u_{t}, z_{t}\right)$:
2. for all x_{t} do \quad Transition Probability / Action Model
3.

$$
\begin{aligned}
& \overline{\operatorname{bel}}\left(x_{t}\right)=\sum_{x_{t-1}} p\left(x_{t} \mid u_{t}, x_{t-1}\right) \operatorname{bel}\left(x_{t-1}\right) \\
& \operatorname{bel}\left(x_{t}\right)=\eta p\left(z_{t} \mid x_{t}\right) \overline{\operatorname{bel}}\left(x_{t}\right)
\end{aligned}
$$

5. endfor
6. return $\operatorname{bel}\left(x_{t}\right)$

Robot Motion

- Robot motion is inherently uncertain.
- How can we model this uncertainty?

Robot Motion

Some reasons for Motion Errors

ideal case

different wheel diameters

carpet

Probabilistic Motion Model

- We consider mobile robot kinematics for robots operating in planar environments
- Robot pose $x_{t}=(x, y, \theta)^{T}$
- Can be easily extended to other types of mobile robots or manipulators

Probabilistic Motion Model

- Generalizes kinematic equations to the fact that the outcome of a control action is uncertain, due to control noise or other non-modelled external factors
- To implement the Bayes Filter, we need the state transition model $p\left(x_{t} \mid u_{t}, x_{t-1}\right)$
- $p\left(x_{t} \mid u_{t}, x_{t-1}\right)$ specifies a posterior probability, that action u_{t} carries the robot from x_{t} to x_{t-1}
- How can we model $p\left(x_{t} \mid u_{t}, x_{t-1}\right)$ based on the kinematic equations?
- Two Motion Models:
- Velocity Model
- Odometry Model

Velocity Model

Odometry Model Parameters

Odometry Model Parameters

Odometry Model Parameters

Velocity Model

- The control data u_{t} is specified by velocity commands given to the robot
- Velocities given to the robot can be translational v_{t} or rotational ω_{t}
- Control data $u_{t}=\left(v_{t}, \omega_{t}\right)$

Velocity Model

- If both velocity components are kept at a fixed value for the entire time interval $(t-1, t]$ then the robot moves in a circular with radius r and center $\left(x_{c}, y_{c}\right)$
- Exact motion $x_{t}=\left(x^{\prime}, y^{\prime}, \theta^{\prime}\right)^{T}$ may be calculated given $x_{t-1}=(x, y, \theta)^{T}$ and $u_{t}=\left(v_{t}, \omega_{t}\right)^{T}$ using trigonometric equations

Velocity Model - Degeneracy

- The robot moves in exact circular paths
- The velocity controls is 2 d dimensional leading to state changes in a 3d pose space
- We perform a final orientation γ when it arrives at its final pose

Probabilistic Motion Model

$$
\begin{array}{ll}
\text { 1: } & \text { Algorithm motion_model_velocity }\left(x_{t}, u_{t}, x_{t-1}\right): \\
\text { 2: } & \mu=\frac{1}{2} \frac{\left(x-x^{\prime}\right) \cos \theta+\left(y-y^{\prime}\right) \sin \theta}{\left(y-y^{\prime}\right) \cos \theta-\left(x-x^{\prime}\right) \sin \theta} \\
\text { 3: } & x^{*}=\frac{x+x^{\prime}}{2}+\mu\left(y-y^{\prime}\right) \\
\text { 4: } & y^{*}=\frac{y+y^{\prime}}{2}+\mu\left(x^{\prime}-x\right) \\
\text { 5: } & r^{*}=\sqrt{\left(x-x^{*}\right)^{2}+\left(y-y^{*}\right)^{2}} \\
\text { 6: } & \Delta \theta=\operatorname{atan} 2\left(y^{\prime}-y^{*}, x^{\prime}-x^{*}\right)-\operatorname{atan} 2\left(y-y^{*}, x-x^{*}\right) \\
7: & \hat{v}=\frac{\Delta \theta}{\Delta t} r^{*} \\
8: & \hat{\omega}=\frac{\Delta \theta}{\Delta t} \\
9: & \hat{\gamma}=\frac{\theta^{\prime}-\theta}{\Delta t}-\hat{\omega}
\end{array}
$$

Calculate the error-free control between the states x_{t-1} and x_{t}

For completeness, the robot performs an additional rotation

Algorithm for computing $p\left(x_{t} \mid u_{t}, x_{t-1}\right)$, based on velocity information, where $x_{t-1}=(x, y, \theta)^{\top}, x_{t}=\left(x^{\prime}, y^{\prime}, \theta^{\prime}\right)^{\top}$ and $u_{t}=\left(v_{t}, \omega_{t}\right)^{\top}$.
The function prob(a, b^{2}) computes the probability of its argument a under a zero-centered distribution with variance b^{2}. (prob can represented by a gaussian or a triangular distribution)

Typical Distributions for Motion Models

1. Algorithm prob_normal_distribution $\left(a, b^{2}\right)$:
2. return $\frac{1}{\sqrt{2 \pi b^{2}}} \exp \left(\frac{a^{2}}{2 b^{2}}\right)$
3. Algorithm prob_triangular_distribution $\left(a, b^{2}\right)$
4. return $\max \left(0, \frac{1}{\sqrt{6} b}-\frac{|a|}{6 b^{2}}\right)$

Probabilistic Motion Model

1: Algorithm motion_model_velocity $\left(x_{t}, u_{t}, x_{t-1}\right)$:

$$
\begin{aligned}
& \mu=\frac{1}{2} \frac{\left(x-x^{\prime}\right) \cos \theta+\left(y-y^{\prime}\right) \sin \theta}{\left(y-y^{\prime}\right) \cos \theta-\left(x-x^{\prime}\right) \sin \theta} \\
& x^{*}=\frac{x+x^{\prime}}{2}+\mu\left(y-y^{\prime}\right) \\
& y^{*}=\frac{y+y^{\prime}}{2}+\mu\left(x^{\prime}-x\right) \\
& r^{*}=\sqrt{\left(x-x^{*}\right)^{2}+\left(y-y^{*}\right)^{2}} \\
& \Delta \theta=\operatorname{atan} 2\left(y^{\prime}-y^{*}, x^{\prime}-x^{*}\right)-\operatorname{atan} 2\left(y-y^{*}, x-x^{*}\right) \\
& \hat{v}=\frac{\Delta \theta}{\Delta t} r^{*} \\
& \hat{\omega}=\frac{\Delta \theta}{\Delta t}
\end{aligned}
$$

$$
\hat{\gamma}=\frac{\theta^{\prime}-\theta}{\Delta t}-\hat{\omega}
$$

$$
\operatorname{return} \operatorname{prob}\left(v-\hat{v}, \alpha_{1}|v|+\alpha_{2}|\omega|\right) \cdot \operatorname{prob}\left(\omega-\hat{\omega}, \alpha_{3}|v|+\alpha_{4}|\omega|\right)
$$

$$
\operatorname{prob}\left(\hat{\gamma}, \alpha_{5}|v|+\alpha_{6}|\omega|\right)
$$

Velocity Motion Model

(darker regions are more probable)

The velocity motion model for different noise parameters settings for the same control $u_{t}=\left(v_{t}, \omega_{t}\right)^{T}$ projected in the $x-y$ space
a) Moderate error parameters

Velocity Motion Model

(darker regions are more probable)

The velocity motion model for different noise parameters settings for the same control $u_{t}=\left(v_{t}, \omega_{t}\right)^{T}$ projected in the $x-y$ space
a) Moderate error parameters
b) Smaller angular error parameters but larger transitional errors
c) Large angular and translational error parameters

Velocity Model with a Map

$$
p\left(x_{t} \mid u_{t}, x_{t-1}\right)
$$

(a) Velocity model without a map
(b) Velocity model with a map: $p\left(x_{t} \mid u_{t}, x_{t-1}, m\right)$ is calculated from the normal product of $p\left(x_{t} \mid u_{t}, x_{t-1}\right)$ and $p\left(x_{t} \mid m\right)$. It is zero in the extended obstacle error and $p\left(x_{t} \mid u_{t}, x_{t-1}\right)$ everywhere else

Sampling

- A sampling algorithm is an algorithm that outputs samples y1, y2, . . . from a given distribution P
- A sampling algorithm is a procedure that allows us to select randomly a subset of units (samples) from a distribution without enumerating all the possible samples of the distribution
- Sampling algorithms are often used to approximate distributions
- A triangular distribution is given by:

Sampling from a Triangular Distribution

10^{3} samples

10^{5} samples

10^{4} samples

10^{6} samples

Normally Distributed Samples

Sampling from Velocity Model

$$
\begin{array}{ll}
\text { 1: } & \text { Algorithm sample_motion_model_velocity }\left(u_{t}, x_{t-1}\right): \\
\text { 2: } & \hat{v}=v+\operatorname{sample}\left(\alpha_{1}|v|+\alpha_{2}|\omega|\right) \\
3: & \hat{\omega}=\omega+\operatorname{sample}\left(\alpha_{3}|v|+\alpha_{4}|\omega|\right) \\
\text { 4: } & \hat{\gamma}=\operatorname{sample}\left(\alpha_{5}|v|+\alpha_{6}|\omega|\right) \\
\text { 5: } & x^{\prime}=x-\frac{\hat{v}}{\omega} \sin \theta+\frac{\hat{v}}{\omega} \sin (\theta+\hat{\omega} \Delta t) \\
\text { 6: } & y^{\prime}=y+\frac{\hat{v}}{\hat{\omega}} \cos \theta-\frac{\hat{v}}{\omega} \cos (\theta+\hat{\omega} \Delta t) \\
7: & \theta^{\prime}=\theta+\hat{\omega} \Delta t+\hat{\gamma} \Delta t \\
8: & \text { return } x_{t}=\left(x^{\prime}, y^{\prime}, \theta^{\prime}\right)^{T} \\
\hline
\end{array}
$$

Algorithm for sampling poses $\mathrm{x}_{\mathrm{t}-1}=(\mathrm{x}, \mathrm{y}, \theta)^{\top}, \mathrm{x}_{\mathrm{t}}=\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}, \theta^{\prime}\right)^{\top}$ and $\mathrm{u}_{\mathrm{t}}=\left(\mathrm{v}_{\mathrm{t}}, \omega_{\mathrm{t}}\right)^{\top}$. Not we are perturbing the final orientation by an additional random term γ. The variables α_{1} through α_{6} are parameters of the motion noise. sample(b^{2}) generates a random sample from a zero-centered distribution with variance b^{2}

Sampling from Velocity Model

Sampling from the velocity model, using the same error parameters as in the previous slides with 500 samples in each.

Odometry Model

Odometry Model

- Odometry is the use of data from motion sensors to estimate change in position over time
- Uses the odometry measurements as the basis for calculating the robot's motion over time
- Odometry obtained by integrating wheel encoder information
- Hence, odometry model uses odometry information in lieu of velocity controls

Odometry Model

- Practical experience suggests odometry, while still erroneous, is more accurate than velocity
- Though both suffer from drift and slippage, velocity model suffers from mismatch between actual motion controllers and our crude mathematical model
- However, odometry is available after the robot has moved
- It cannot be used for motion planning algorithms since they need to predict the effects of motion
- Can still be used for filter algorithms such as localization and mapping algorithms
- Odometry models are usually applied for estimation while velocity models are used for probabilistic motion planning

Odometry Model

- Uses the relative motion information as measured by the robot's internal odometry
- From $(t-1, t]$, the robot advances from x_{t} to x_{t-1}
- The odometry reports back to us a related advance from

$$
\overline{x_{t-1}}=(\bar{x}, \bar{y}, \bar{\theta})^{T} \quad \text { to } \quad \overline{x_{t}}=\left(\overline{x^{\prime}}, \bar{y}^{\prime}, \overline{\theta^{\prime}}\right)^{T}
$$

(bar indicates they are odometry measurements in the robot's local frame)

- Key idea: In state estimation, the relative difference between $\overline{x_{t-1}}$ and $\overline{x_{t}}$ is a good estimator for the difference of the true poses x_{t-1} and x_{t}
- Motion information is given by:

$$
u_{t}=\left(\overline{x_{t-1}}, \overline{x_{t}}\right)^{T}
$$

Odometry Model Parameters

$$
\left(\bar{x}^{\prime}, \bar{y}^{\prime}, \bar{\theta}^{\prime}\right)^{T}
$$

$(\bar{x}, \bar{y}, \bar{\theta})^{T}$

Odometry Model Parameters

Odometry Model Parameters

Odometry Model Parameters

Odometry Model Parameters

- Relative odometry motion is transformed into a sequence of three steps:
- Initial rotation $\delta_{\text {rot1 }}$
- Translation $\delta_{\text {trans }}$
- Final Rotation $\delta_{\text {rot2 }}$

Odometry Model Parameters

$$
\begin{aligned}
& \delta_{\text {rot1 }}=\operatorname{atan} 2\left(\bar{y}^{\prime}-\bar{y}, \bar{x}^{\prime}-\bar{x}\right)-\bar{\theta} \\
& \delta_{\text {trans }}=\sqrt{\left(\bar{y}^{\prime}-\bar{y}\right)^{2}+\left(\bar{x}^{\prime}-\bar{x}\right)^{2}} \\
& \delta_{\text {rot } 2}=\overline{\theta^{\prime}}-\bar{\theta}-\delta_{\text {rot } 1}
\end{aligned}
$$

1. Algorithm motion_model_odometry $\left(x_{t}, u_{t}, x_{t-1}\right)$:
2. $\delta_{\text {rot } 1}=\operatorname{atan} 2\left(\overline{y^{\prime}}-\bar{y}, \overline{x^{\prime}}-\bar{x}\right)-\bar{\theta}$
3. $\delta_{\text {trans }}=\sqrt{\left(\overline{x^{\prime}}-\bar{x}\right)^{2}+\left(\overline{y^{\prime}}-\bar{y}\right)^{2}}$
4. $\delta_{\text {rot } 2}=\overline{\theta^{\prime}}-\bar{\theta}-\delta_{\text {rot } 1}$
5. $\hat{\delta}_{\text {rot } 1}=\operatorname{atan} 2\left(y^{\prime}-y, x^{\prime}-x\right)-\theta$
6. $\hat{\delta}_{\text {trans }}=\sqrt{\left(x^{\prime}-x\right)^{2}+\left(y^{\prime}-y\right)^{2}}$
7. $\hat{\delta}_{\text {rot } 2}=\theta^{\prime}-\theta-\hat{\delta}_{\text {rot } 1}$
8. $p_{1}=\operatorname{prob}\left(\delta_{\text {rot } 1}-\hat{\delta}_{\text {rot } 1}, \alpha_{1} \hat{\delta}_{\text {rot } 1}^{2}+\alpha_{2} \hat{\delta}_{\text {trans }}^{2}\right)$
9. $\quad p_{2}=\operatorname{prob}\left(\delta_{\text {trans }}-\hat{\delta}_{\text {trans }}, \alpha_{3} \hat{\delta}_{\text {trans }}^{2}+\alpha_{4} \hat{\delta}_{\text {rot } 1}^{2}+\alpha_{4} \hat{\delta}_{\text {rot } 2}^{2}\right)$
10. $p_{3}=\operatorname{prob}\left(\delta_{\text {rot } 2}-\hat{\delta}_{\text {rot } 2}, \alpha_{1} \hat{\delta}_{\text {rot } 2}^{2}+\alpha_{2} \hat{\delta}_{\text {trans }}^{2}\right)$
11. return $p_{1} \cdot p_{2} \cdot p_{3}$

Algorithm for computing $p\left(x_{t} \mid u_{t}, x_{t-1}\right)$ based on odometry information. Here the control $u_{\underline{t}}=\left(\overline{x_{t-1}}, \overline{x_{t}}\right)^{T}$ with $\overline{x_{t-1}}=(\bar{x}, \bar{y}, \bar{\theta})^{T}$ and $\overline{x_{t}}=\left(\overline{x^{\prime}}, \bar{y}^{\prime}, \overline{\theta^{\prime}}\right)^{T}$

1. Algorithm motion_model_odometry $\left(x_{t}, u_{t}, x_{t-1}\right):$
2. $\delta_{\text {rot } 1}=\operatorname{atan} 2\left(\overline{y^{\prime}}-\bar{y}, \overline{x^{\prime}}-\bar{x}\right)-\bar{\theta}$
3. $\delta_{\text {trans }}=\sqrt{\left(\overline{x^{\prime}}-\bar{x}\right)^{2}+\left(\overline{y^{\prime}}-\bar{y}\right)^{2}}$
4. $\delta_{\text {rot } 2}=\overline{\theta^{\prime}}-\bar{\theta}-\delta_{\text {rot } 1}$
5. $\hat{\delta}_{\text {rot } 1}=\operatorname{atan2} 2\left(y^{\prime}-y, x^{\prime}-x\right)-\theta$
6. $\hat{\delta}_{\text {trans }}=\sqrt{\left(x^{\prime}-x\right)^{2}+\left(y^{\prime}-y\right)^{2}}$
7. $\hat{\delta}_{\text {rot } 2}=\theta^{\prime}-\theta-\hat{\delta}_{\text {rot } 1}$
8. $p_{1}=\operatorname{prob}\left(\delta_{r o t 1}-\hat{\delta}_{r o t 1}, \alpha_{1} \hat{\delta}_{\text {rot } 1}^{2}+\alpha_{2} \hat{\delta}_{\text {trans }}^{2}\right)$
9. $p_{2}=\operatorname{prob}\left(\delta_{\text {trans }}-\hat{\delta}_{\text {trans }}, \alpha_{3} \hat{\delta}_{\text {trans }}^{2}+\alpha_{4} \hat{\delta}_{\text {rot } 1}^{2}+\alpha_{4} \hat{\delta}_{\text {rot } 2}^{2}\right)$
10. $p_{3}=\operatorname{prob}\left(\delta_{\text {rot } 2}-\hat{\delta}_{\text {rot } 2}, \alpha_{1} \hat{\delta}_{\text {rot } 2}^{2}+\alpha_{2} \hat{\delta}_{\text {trans }}^{2}\right)$
11. return $p_{1} \cdot p_{2} \cdot p_{3}$

1. Algorithm sample_motion_model_odometry $\left(x_{t-1}, u_{t}\right)$

2. $\delta_{\text {rot } 1}=\operatorname{atan} 2\left(\overline{y^{\prime}}-\bar{y}, \overline{x^{\prime}}-\bar{x}\right)-\bar{\theta}$
3. $\delta_{\text {trans }}=\sqrt{\left(\overline{x^{\prime}}-\bar{x}\right)^{2}+\left(\overline{y^{\prime}}-\bar{y}\right)^{2}}$
4. $\delta_{\text {rot } 2}=\overline{\theta^{\prime}}-\bar{\theta}-\delta_{\text {rot } 1}$
5. $\quad \hat{\delta}_{\text {rot } 1}=\delta_{\text {rot } 1}-\operatorname{sample}\left(\alpha_{1} \hat{\delta}_{\text {rot } 1}^{2}+\alpha_{2} \hat{\delta}_{\text {trans }}^{2}\right)$
6. $\quad \hat{\delta}_{\text {trans }}=\delta_{\text {rot } 1}-\operatorname{sample}\left(\alpha_{3} \hat{\delta}_{\text {trans }}^{2}+\alpha_{4} \hat{\delta}_{\text {rot } 1}^{2}+\alpha_{4} \hat{\delta}_{\text {rot } 2}^{2}\right)$

Calculate the relative motion parameters from odometry readings

Add noise to calculated motion parameters
7. $\hat{\delta}_{\text {rot } 2}=\delta_{\text {rot } 1}-\operatorname{sample}\left(\alpha_{1} \hat{\delta}_{\text {rot } 2}^{2}+\alpha_{2} \hat{\delta}_{\text {trans }}^{2}\right)$
8. $x^{\prime}=x+\hat{\delta}_{\text {trans }} \cos \left(\theta+\hat{\delta}_{\text {rot } 1}\right)$
9. $y^{\prime}=y+\hat{\delta}_{\text {trans }} \sin \left(\theta+\hat{\delta}_{\text {rot } 1}\right)$
10. $\theta^{\prime}=\theta+\hat{\delta}_{\text {rot } 1}+\hat{\delta}_{\text {rot } 2}$

Calculate the sample state

Algorithm for sampling from $p\left(x_{t} \mid u_{t}, x_{t-1}\right)$ based on odometry information
11. return $x_{t}=\left(x^{\prime}, y^{\prime}, \theta^{\prime}\right)^{T}$

Sampling from Velocity Model

(b)

Repeated Sampling from Our Motion Model

Sampling approximation of the position belief for a non-sensing robot. Solid lines displays the robot's actual motion and the samples represent the robot's belief at different points in time

Summary

- We discussed motion models for odometry-based and velocity-based systems
- We discussed ways to calculate the posterior probability $p\left(x_{t} \mid u_{t}, x_{t-1}\right)$
- We also described how to sample from $p\left(x_{t} \mid u_{t}, x_{t-1}\right)$
- Typically the calculations are done in fixed time intervals Δt
- In practice, the parameters of the models have to be learned
- We also briefly discussed an extended motion model that takes the map into account

Reference

1. Thrun, Sebastian, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT press, 2005 .
2. http://ais.informatik.uni-freiburg.de/teaching/ss11/robotics/slides/06-motion-models.pdf
