ECE 4960

Prof. Kirstin Hagelskjær Petersen

1

kirstin@cornell.edu

Vivek Thangavelu vs353@cornell.edu

Fast Robots

Probabilistic Motion Model $p(x_t | u_t, x_{t-1})$

Bayes Filter

Algorithm Bayes_Filter ($bel(x_{t-1}), u_t, z_t$): 1. 2. for all x_t do Transition Probability / Action Model $\overline{bel}(x_t) = \sum_{x_{t-1}} p(x_t | u_t, x_{t-1}) bel(x_{t-1})$ 3. [Prediction Step] $bel(x_t) = \eta p(z_t|x_t) \overline{bel}(x_t)$ 4. 5. endfor return $bel(x_t)$ 6.

Robot Motion

- Robot motion is inherently uncertain.
- How can we model this uncertainty?

Robot Motion

Some reasons for Motion Errors

ideal case

bump

different wheel diameters

carpet

and many more ...

6

Probabilistic Motion Model

• We consider mobile robot kinematics for robots operating in planar environments

7

- Robot pose $x_t = (x, y, \theta)^T$
- Can be easily extended to other types of mobile robots or manipulators

Probabilistic Motion Model

- Generalizes kinematic equations to the fact that the outcome of a control action is uncertain, due to control noise or other non-modelled external factors
- To implement the Bayes Filter, we need the state transition model $p(x_t \mid u_t, x_{t-1})$
- $p(x_t \mid u_t, x_{t-1})$ specifies a posterior probability, that action u_t carries the robot from x_t to x_{t-1}
- How can we model $p(x_t | u_t, x_{t-1})$ based on the kinematic equations?
- Two Motion Models:
 - Velocity Model
 - Odometry Model

Velocity Model

10

Velocity Model

- The control data u_t is specified by velocity commands given to the robot
- Velocities given to the robot can be translational v_t or rotational ω_t
- Control data $u_t = (v_t, \omega_t)$

Velocity Model

- If both velocity components are kept at a fixed value for the entire time interval (t - 1, t] then the robot moves in a circular with radius r and center (x_c, y_c)
- Exact motion $x_t = (x', y', \theta')^T$ may be calculated given $x_{t-1} = (x, y, \theta)^T$ and $u_t = (v_t, \ \omega_t)^T$ using trigonometric equations

Velocity Model - Degeneracy

- The robot moves in exact circular paths
- The velocity controls is 2d dimensional leading to state changes in a 3d pose space
- We perform a final orientation γ when it arrives at its final pose

Probabilistic Motion Model

Calculate the error-free control between the states x_{t-1} and x_t

For completeness, the robot performs an additional rotation

Algorithm for computing $p(x_t | u_t, x_{t-1})$, based on velocity information, where $x_{t-1} = (x, y, \theta)^T$, $x_t = (x', y', \theta')^T$ and $u_t = (v_t, \omega_t)^T$. The function prob(a,b²) computes the probability of its argument a under a zero-centered distribution with variance b². (prob can represented by a gaussian or a triangular distribution)

Typical Distributions for Motion Models

- 1. Algorithm prob_normal_distribution (a, b^2) :
- 2. return $\frac{1}{\sqrt{2\pi b^2}} exp\left(\frac{a^2}{2b^2}\right)$

1. Algorithm prob_triangular_distribution (a, b^2) : 2. return $max\left(0, \frac{1}{\sqrt{6}b} - \frac{|a|}{6b^2}\right)$

Probabilistic Motion Model

1: Algorithm motion_model_velocity(x_t, u_t, x_{t-1}): $\mu = \frac{1}{2} \frac{(x - x')\cos\theta + (y - y')\sin\theta}{(y - y')\cos\theta - (x - x')\sin\theta}$ 2: $x^* = \frac{x + x'}{2} + \mu(y - y')$ 3: $y^* = \frac{y+y'}{2} + \mu(x'-x)$ 4:Calculate the error-free $r^* = \sqrt{(x - x^*)^2 + (y - y^*)^2}$ control between the 5: states x_{t-1} and x_t $\Delta \theta = \operatorname{atan2}(y' - y^*, x' - x^*) - \operatorname{atan2}(y - y^*, x - x^*)$ 6: $\hat{v} = \frac{\Delta\theta}{\Delta t} r^*$ 7: $\hat{\omega} = \frac{\Delta\theta}{\Delta t}$ 8: $\hat{\gamma} = \frac{\theta' - \theta}{\Delta t} - \hat{\omega}$ 9: For completeness, the robot performs an return $\operatorname{prob}(v - \hat{v}, \alpha_1 | v | + \alpha_2 | \omega |) \cdot \operatorname{prob}(\omega - \hat{\omega}, \alpha_3 | v | + \alpha_4 | \omega |)$ 10:additional rotation $\cdot \mathbf{prob}(\hat{\gamma}, \alpha_5 |v| + \alpha_6 |\omega|)$

Algorithm for computing $p(x_t | u_t, x_{t-1})$, based on velocity information, where $x_{t-1} = (x, y, \theta)^T$, $x_t = (x', y', \theta')^T$ and $u_t = (v_t, \omega_t)^T$. The function prob(a,b²) computes the probability of its argument a under a zero-centered distribution with variance b². (prob can represented by a gaussian or a triangular distribution) **18**

Velocity Motion Model

(darker regions are more probable)

The velocity motion model for different noise parameters settings for the same control $u_t = (v_t, \omega_t)^T$ projected in the x-y space

a) Moderate error parameters

Velocity Motion Model

(darker regions are more probable)

The velocity motion model for different noise parameters settings for the same control $u_t = (v_t, \omega_t)^T$ projected in the x-y space

- a) Moderate error parameters
- b) Smaller angular error parameters but larger transitional errors
- c) Large angular and translational error parameters

Velocity Model with a Map

- (a) Velocity model without a map
- (b) Velocity model with a map: $p(x_t | u_t, x_{t-1}, m)$ is calculated from the normal product of $p(x_t | u_t, x_{t-1})$ and $p(x_t | m)$. It is zero in the extended obstacle error and $p(x_t | u_t, x_{t-1})$ everywhere else **21**

Sampling

- A sampling algorithm is an algorithm that outputs samples y1, y2, . . . from a given distribution P
- A sampling algorithm is a procedure that allows us to select randomly a subset of units (samples) from a distribution without enumerating all the possible samples of the distribution
- Sampling algorithms are often used to approximate distributions
- A triangular distribution is given by:

$$\varepsilon_{\sigma^2}(x) = \begin{cases} 0 \text{ if } |x| > \sqrt{6\sigma^2} \\ \frac{\sqrt{6\sigma^2} - |x|}{6\sigma^2} \end{cases}$$

22

Sampling from a Triangular Distribution

10³ samples

Complet Concernent of the series of the s

10⁴ samples

10⁶ samples 23

Normally Distributed Samples

Sampling from Velocity Model

1:	Algorithm sample_motion_model_velocity(u_t, x_{t-1}):
2:	$\hat{v} = v + \mathbf{sample}(\alpha_1 v + \alpha_2 \omega)$
3:	$\hat{\omega} = \omega + \mathbf{sample}(\alpha_3 v + \alpha_4 \omega)$
4:	$\hat{\gamma} = \mathbf{sample}(\alpha_5 v + \alpha_6 \omega)$
5:	$x' = x - \frac{\hat{v}}{\hat{\omega}}\sin\theta + \frac{\hat{v}}{\hat{\omega}}\sin(\theta + \hat{\omega}\Delta t)$
6:	$y' = y + \frac{\hat{v}}{\hat{\omega}} \cos \theta - \frac{\hat{v}}{\hat{\omega}} \cos(\theta + \hat{\omega}\Delta t)$
7:	$\theta' = \theta + \hat{\omega}\Delta t + \hat{\gamma}\Delta t$
8:	return $x_t = (x', y', \theta')^T$

Algorithm for sampling poses $x_{t-1} = (x, y, \theta)^T$, $x_t = (x', y', \theta')^T$ and $u_t = (v_t, \omega_t)^T$. Not we are perturbing the final orientation by an additional random term γ . The variables α_1 through α_6 are parameters of the motion noise. sample(b²) generates a random sample from a zero-centered distribution with variance b²

Sampling from Velocity Model

- Odometry is the use of data from motion sensors to estimate change in position over time
- Uses the odometry measurements as the basis for calculating the robot's motion over time
- Odometry obtained by integrating wheel encoder information
- Hence, odometry model uses odometry information in lieu of velocity controls

- Practical experience suggests odometry, while still erroneous, is more accurate than velocity
- Though both suffer from drift and slippage, velocity model suffers from mismatch between actual motion controllers and our crude mathematical model
- However, odometry is available after the robot has moved
 - It cannot be used for motion planning algorithms since they need to predict the effects of motion
 - Can still be used for filter algorithms such as localization and mapping algorithms
- Odometry models are usually applied for estimation while velocity models are used for probabilistic motion planning

- Uses the relative motion information as measured by the robot's internal odometry
- From (t 1, t], the robot advances from x_t to x_{t-1}
- The odometry reports back to us a related advance from

$$\overline{x_{t-1}} = (\overline{x}, \overline{y}, \overline{\theta})^T$$
 to $\overline{x_t} = (\overline{x'}, \overline{y'}, \overline{\theta'})^T$

(bar indicates they are odometry measurements in the robot's local frame)

- Key idea: In state estimation, the relative difference between $\overline{x_{t-1}}$ and $\overline{x_t}$ is a good estimator for the difference of the true poses x_{t-1} and x_t
- Motion information is given by:

ECE4960 Fast Robots

$$u_t = (\overline{x_{t-1}}, \overline{x_t})^T$$

- Relative odometry motion is transformed into a sequence of three steps:
 - Initial rotation δ_{rot1}
 - Translation δ_{trans}
 - Final Rotation δ_{rot2}
- These three parameters are sufficient to reconstruct the relative motion between two robot states

$$u_t = (\delta_{rot1}, \delta_{trans}, \delta_{rot2})^T$$

$$\delta_{rot1} = \operatorname{atan2}(\bar{y}' - \bar{y}, \bar{x}' - \bar{x}) - \bar{\theta}$$
$$\delta_{trans} = \sqrt{(\bar{y}' - \bar{y})^2 + (\bar{x}' - \bar{x})^2}$$
$$\delta_{rot2} = \bar{\theta}' - \bar{\theta} - \delta_{rot1}$$

1. Algorithm motion_model_odometry (x_t, u_t, x_{t-1}) :

2.
$$\delta_{rot1} = \mathtt{atan2}(\bar{y'} - \bar{y}, \bar{x'} - \bar{x}) - \bar{\theta}$$

3.
$$\delta_{trans} = \sqrt{(\bar{x'} - \bar{x})^2 + (\bar{y'} - \bar{y})^2}$$

4.
$$\delta_{rot2} = \bar{\theta'} - \bar{\theta} - \delta_{rot1}$$

5.
$$\hat{\delta}_{rot1} = \mathtt{atan2}(y'-y, x'-x) - \theta$$

6.
$$\hat{\delta}_{trans} = \sqrt{(x'-x)^2 + (y'-y)^2}$$

7.
$$\hat{\delta}_{rot2} = \theta' - \theta - \hat{\delta}_{rot1}$$

8.
$$p_1 = \mathbf{prob}(\delta_{rot1} - \hat{\delta}_{rot1}, \alpha_1 \hat{\delta}_{rot1}^2 + \alpha_2 \hat{\delta}_{trans}^2)$$

9.
$$p_2 = \mathbf{prob}(\delta_{trans} - \hat{\delta}_{trans}, \alpha_3 \hat{\delta}_{trans}^2 + \alpha_4 \hat{\delta}_{rot1}^2 + \alpha_4 \hat{\delta}_{rot2}^2)$$

10.
$$p_3 = \mathbf{prob}(\delta_{rot2} - \hat{\delta}_{rot2}, \alpha_1 \hat{\delta}_{rot2}^2 + \alpha_2 \hat{\delta}_{trans}^2)$$

11. return $p_1.p_2.p_3$

Calculate the relative motion parameters from odometry readings

Calculate the relative motion parameters for the given states x_{t-1} and x_t

Algorithm for computing $p(x_t | u_t, x_{t-1})$ based on odometry information. Here the control $u_t = (\overline{x_{t-1}}, \overline{x_t})^T$ with $\overline{x_{t-1}} = (\overline{x}, \overline{y}, \overline{\theta})^T$ and $\overline{x_t} = (\overline{x'}, \overline{y'}, \overline{\theta'})^T$

1. Algorithm motion_model_odometry (x_t, u_t, x_{t-1}) :

2.
$$\delta_{rot1} = \mathtt{atan2}(\bar{y'} - \bar{y}, \bar{x'} - \bar{x}) - \bar{\theta}$$

3.
$$\delta_{trans} = \sqrt{(\bar{x'} - \bar{x})^2 + (\bar{y'} - \bar{y})^2}$$

4.
$$\delta_{rot2} = \bar{\theta'} - \bar{\theta} - \delta_{rot1}$$

5.
$$\hat{\delta}_{rot1} = \mathtt{atan2}(y'-y, x'-x) - \theta$$

6.
$$\hat{\delta}_{trans} = \sqrt{(x'-x)^2 + (y'-y)^2}$$

7.
$$\hat{\delta}_{rot2} = \theta' - \theta - \hat{\delta}_{rot1}$$

8.
$$p_1 = \mathbf{prob}(\delta_{rot1} - \hat{\delta}_{rot1}, \alpha_1 \hat{\delta}_{rot1}^2 + \alpha_2 \hat{\delta}_{trans}^2)$$

9.
$$p_2 = \mathbf{prob}(\delta_{trans} - \hat{\delta}_{trans}, \alpha_3 \hat{\delta}_{trans}^2 + \alpha_4 \hat{\delta}_{rot1}^2 + \alpha_4 \hat{\delta}_{rot2}^2)$$

10.
$$p_3 = \mathbf{prob}(\delta_{rot2} - \hat{\delta}_{rot2}, \alpha_1 \hat{\delta}_{rot2}^2 + \alpha_2 \hat{\delta}_{trans}^2)$$

11. return $p_1.p_2.p_3$

Calculate the relative motion parameters from odometry readings

Calculate the relative motion parameters for the given states x_{t-1} and x_t

1.	Algorithm Bayes_Filter $(bel(x_{t-1}), u_t, z_t)$:
2.	for all x_t do
3.	$\overline{bel}(x_t) = \sum_{x_{t-1}} p(x_t u_t, x_{t-1}) \ bel(x_{t-1})$
4.	$bel(x_t) = \eta p(z_t x_t) \overline{bel}(x_t)$
5.	endfor
6.	return $bel(x_t)$

Algorithm for computing $p(x_t | u_t, x_{t-1})$ based on odometry information. Here the control $u_t = (\overline{x_{t-1}}, \overline{x_t})^T$ with $\overline{x_{t-1}} = (\overline{x}, \overline{y}, \overline{\theta})^T$ and $\overline{x_t} = (\overline{x'}, \overline{y'}, \overline{\theta'})^T$

1. Algorithm sample_motion_model_odometry(x_{t-1}, u_t) :

2.
$$\delta_{rot1} = \mathtt{atan2}(\bar{y'} - \bar{y}, \bar{x'} - \bar{x}) - \bar{\theta}$$

3.
$$\delta_{trans} = \sqrt{(\bar{x'} - \bar{x})^2 + (\bar{y'} - \bar{y})^2}$$

4.
$$\delta_{rot2} = \bar{\theta}' - \bar{\theta} - \delta_{rot1}$$

5.
$$\hat{\delta}_{rot1} = \delta_{rot1} - \mathbf{sample}(\alpha_1 \hat{\delta}_{rot1}^2 + \alpha_2 \hat{\delta}_{trans}^2)$$

6.
$$\hat{\delta}_{trans} = \delta_{rot1} - \mathbf{sample}(\alpha_3 \hat{\delta}_{trans}^2 + \alpha_4 \hat{\delta}_{rot1}^2 + \alpha_4 \hat{\delta}_{rot2}^2)$$

7.
$$\hat{\delta}_{rot2} = \delta_{rot1} - \mathbf{sample}(\alpha_1 \hat{\delta}_{rot2}^2 + \alpha_2 \hat{\delta}_{trans}^2)$$

8.
$$x' = x + \hat{\delta}_{trans} \cos(\theta + \hat{\delta}_{rot1})$$

9.
$$y' = y + \hat{\delta}_{trans} \sin(\theta + \hat{\delta}_{rot1})$$

10.
$$\theta' = \theta + \hat{\delta}_{rot1} + \hat{\delta}_{rot2}$$

1. return
$$x_t = (x', y', \theta')^T$$

Calculate the relative motion parameters from odometry readings

Add noise to calculated motion parameters

Calculate the sample state

Algorithm for sampling from $p(x_t | u_t, x_{t-1})$ based on odometry information

Sampling from Velocity Model

Sampling from the odometry model, using the same error parameters as in the previous slides with 500 samples in each.

Repeated Sampling from Our Motion Model

Sampling approximation of the position belief for a non-sensing robot. Solid lines displays the robot's actual motion and the samples represent the robot's belief at different points in time 41

Summary

- We discussed motion models for odometry-based and velocity-based systems
- We discussed ways to calculate the posterior probability $p(x_t \mid u_t, x_{t-1})$
- We also described how to sample from $p(x_t \mid u_t, x_{t-1})$
- Typically the calculations are done in fixed time intervals Δt
- In practice, the parameters of the models have to be learned
- We also briefly discussed an extended motion model that takes the map into account

Reference

- 1. Thrun, Sebastian, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT press, 2005.
- 2. http://ais.informatik.uni-freiburg.de/teaching/ss11/robotics/slides/06-motion-models.pdf

