
ECE 4960

Fast Robots

ECE4960 Fast Robots 1

Prof. Kirstin Hagelskjær Petersen
kirstin@cornell.edu

Slides adapted from Vivek Thangavelu

mailto:kirstin@cornell.edu

ECE4960 Fast Robots

• Local planners
• Global localization and planning

• Configuration space
• Map representations

• Continuous

• Discrete

• Topological
• Graph representations
• Graph Search Algorithms

• Breadth First Search
• Depth First Search
• Dijkstras
• A*

Outline of the next module on Navigation

2

Information
Extraction

Raw Sensor
Data

Path

Path Planning

Actuator
Commands

Path Execution

Environmental
model

Localization

PE
R

C
EP

TI
O

N
ES

TI
M

AT
IO

N
PLAN

N
IN

G
M

O
TIO

N

C
O

N
TR

O
L

Global Map and State

WORLD

• Navigation breaks down to: Localization, Map Building, Path Planning
Outline of the next module on Navigation and Path Planning

Global Motion Planning with Maps
Occupancy Grid Map (discr. coord)

Global Motion Planning with Maps
Topological Map
(Continuous Coordinates)
Occupancy grid map
• 2D array: Each cell represents a square of real world (cms)
• Wasteful for big open spaces

x < 6

free y<5

free occupied

Global Motion Planning with Maps
Occupancy Grid Map (discr. coord) K-d Tree Map (Quadtree)

Global Motion Planning with Maps
Topological Map
(Continuous Coordinates)Topological maps
• Standard graph theory algorithms

• Good abstract representation
• Tradeoff in # of nodes

• complexity vs. accuracy
• Limited information

Global Motion Planning with Maps
Topological Map
(Continuous Coordinates)

Occupancy Grid Map (discr. coord) K-d Tree Map (Quadtree)

Source:
http://mitocw.udsm.ac.tz

Overview of Algorithms for Path Planning

Optimal Control
• Solves truly optimal solutions
• Intractable for moderately complex and

nonconvex problems

Potential Fields
• Impose a math function over the work/C space
• Simple

Graph Search
• Identify a set of edges between nodes

within the free space

ECE 4960

Planning using
Potential Fields

ECE4960 Fast Robots 10

Prof. Kirstin Hagelskjær Petersen
kirstin@cornell.edu

mailto:kirstin@cornell.edu

Khatib, 1986

Planning using Potential Fields

• Robot is treated as a point under the influence of a (continuous)
artificial potential field

• Robot movement becomes similar to a ball rolling down a hill

Khatib, Stanford

Planning using Potential Fields

• The goal creates an attractive force
• Modeled as a spring
• Hooke’s law: F = -kX
• “Parabolic attractor”
• 𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎 𝑞𝑞 = 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎(𝑞𝑞 − 𝑞𝑞𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔)2

• 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 𝑞𝑞 = −𝛻𝛻𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 𝑞𝑞 − 𝑞𝑞𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔
• Obstacles are repulsive forces

• Modeled as charged particles
• Coulomb's law: F= k q1q2 / r2

• 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟 𝑞𝑞 = �0.5𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟
1

𝜌𝜌(𝑞𝑞)
− 1

𝜌𝜌0

2

0

, 𝑖𝑖𝑖𝑖 𝜌𝜌(𝑞𝑞) ≤ 𝜌𝜌0
, 𝑖𝑖𝑖𝑖 𝜌𝜌(𝑞𝑞) ≥ 𝜌𝜌0

• 𝐹𝐹𝑟𝑟𝑟𝑟𝑟𝑟 𝑞𝑞 = �𝑘𝑘𝑟𝑟𝑟𝑟𝑟𝑟
1

𝜌𝜌(𝑞𝑞)
− 1

𝜌𝜌0

1
𝜌𝜌(𝑞𝑞)2

𝑞𝑞−𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝜌𝜌(𝑞𝑞)

0

, 𝑖𝑖𝑖𝑖 𝜌𝜌(𝑞𝑞) ≤ 𝜌𝜌0
, 𝑖𝑖𝑖𝑖 𝜌𝜌(𝑞𝑞) ≥ 𝜌𝜌0

Planning using Potential Fields

• Goal generates attractive force
• Modeled as a spring
• Hooke’s law: F = -kX

• Obstacle are repulsive forces
• Modeled as charged particles
• Coulomb's law: F= k q1q2 / r2

• Model navigation as the sum of forces on the robot
• The overall potential field

• 𝑈𝑈 𝑞𝑞 = 𝑈𝑈𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔 𝑞𝑞 + ∑𝑈𝑈𝑔𝑔𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑔𝑔𝑟𝑟𝑜𝑜(𝑞𝑞)
• Robot motion is proportional to induced force

• F(q) = −𝛻𝛻𝑈𝑈(𝑞𝑞)
• e.g. 2 DOF robot will experience

• 𝐹𝐹(𝑞𝑞) = −𝛻𝛻𝑈𝑈(𝑞𝑞) = 𝜕𝜕𝑈𝑈
𝜕𝜕𝑥𝑥

, 𝜕𝜕𝑈𝑈
𝜕𝜕𝜕𝜕

Planning using Potential Fields

• Goal generates attractive force
• Modeled as a spring
• Hooke’s law: F = -kX

• Obstacle are repulsive forces
• Modeled as charged particles
• Coulomb's law: F= k q1q2 / r2

• Model navigation as the sum of forces on the robot
• Pitfalls / local minima

• U-shaped obstacles
• Long walls
• Solutions

• Incorporate high-level planner
• Incorporate procedural planner
• Adapt the field to have gradual repulsion
• Adding stochasticity

Source:
http://mitocw.udsm.ac.tz

Optimal Control
• Solves truly optimal solutions
• Intractable for moderately complex and

nonconvex problems

Potential Fields
• Impose a math function over the work/C space
• Simple

Graph Search
• Identify a set of edges between nodes

within the free space

Overview of Algorithms for Path Planning

ECE4960 Fast Robots

• Transform continuous/discrete/topological map to a discrete graph
• Why graphs?

• Model the path planning problem as a search problem
• Graph theory has lots of tools
• Real-time capable algorithms
• Can accommodate for evolving maps

Graph Construction

ECE 4960

Graph Construction

ECE4960 Fast Robots 17

Prof. Kirstin Hagelskjær Petersen
kirstin@cornell.edu

mailto:kirstin@cornell.edu

ECE4960 Fast Robots

Modelling path planning as a graph search problem

Real
system

Configuration
Space

Map
Representation

Graph
Search

Graph
Construction

Workspace Configuration space

ECE4960 Fast Robots

• Grid Worlds
• Exact Cell Decomposition
• Fixed Cell Decomposition
• Approximate Cell Decomposition

• Visibility graphs

• Probabilistic Roadmaps
• RRT

Map Representation and Graph Construction Methods

1. Divide space into simple, connected regions, or “cells”
2. Determine adjacency of open cells
3. Construct a connectivity graph
4. Find cells with initial and goal configuration
5. Search for a path in the connectivity graph to join them
6. From the sequence of cells, compute a path within each cell

• e.g. passing through the midpoints of cell boundaries or
by sequence of wall following movements

ECE4960 Fast Robots

• Decomposition
• Break down the map into cells based on

geometric criticality
• The map representation tessellates the

space into areas of free space
• Abstraction

• The position of the robot with the each
cell of free space does not matter

• What matters is the robot’s ability to
traverse from each free cell to adjacent
free cell

Exact Cell Decomposition

ECE4960 Fast Robots

Approximate Cell Decomposition

(Lab 9)

Adaptive Cell Decomposition

ECE4960 Fast Robots

• Grid World
• Exact Cell Decomposition
• Fixed Cell Decomposition
• Approximate Cell Decomposition

• Visibility graphs

• Probabilistic Roadmaps
• RRT

Map Representation and Graph Construction Methods

ECE4960 Fast Robots

• Connect initial and goal locations with all visible vertices

Visibility Graphs

Ioannis Rekleitis,
South Carolina

ECE4960 Fast Robots

• Connect initial and goal locations with all visible vertices
• Connect each obstacle vertex to every visible obstacle vertex

Visibility Graphs

Ioannis Rekleitis,
South Carolina

ECE4960 Fast Robots

• Connect initial and goal locations with all visible vertices
• Connect each obstacle vertex to every visible obstacle vertex
• Remove edges that intersect the interior of an obstacle

Visibility Graphs

Ioannis Rekleitis,
South Carolina

ECE4960 Fast Robots

• Connect initial and goal locations with all visible vertices
• Connect each obstacle vertex to every visible obstacle vertex
• Remove edges that intersect the interior of an obstacle
• Plan on the resulting graph

Visibility Graphs

Ioannis Rekleitis,
South Carolina

ECE4960 Fast Robots

• Connect initial and goal locations with all visible vertices
• Connect each obstacle vertex to every visible obstacle vertex
• Remove edges that intersect the interior of an obstacle
• Plan on the resulting graph

Visibility Graphs

Ioannis Rekleitis,
South Carolina

ECE4960 Fast Robots

• Graph Construction
• Exact Cell Decomposition
• Fixed Cell Decomposition
• Approximate Cell Decomposition

• Visibility graphs

• Probabilistic Roadmaps
• RRT

Map Representation and Graph Construction Methods

• Explicit geometry-based planners are impractical in high dimensional spaces

• Sampling-based planners

• Often efficient in high dimensional spaces

• Rather than computing the C-Space explicitly, we sample it

• Simply need to know if a robot configuration is in collision
• Collision detection is a separate module which can be tailored to the application

• As collision detection improves, so do these algithms

Sampling-Based Planners

ECE 4960

Probabilistic Roadmaps

ECE4960 Fast Robots 30

Prof. Kirstin Hagelskjær Petersen
kirstin@cornell.edu

Lydia Kavraki, 1996
Rice Univeristy

mailto:kirstin@cornell.edu

Free/feasible spaceSpace ℜn free/forbidden space

Probabilistic Roadmap

Probabilistic Roadmap

Configurations are sampled by picking coordinates at random

Probabilistic Roadmap

Sampled configurations are tested for collision

Probabilistic Roadmap

Each milestone is linked by straight paths to its nearest neighbors

Probabilistic Roadmap

The collision-free links are retained as local paths to form the PRM

Probabilistic Roadmap

The start and goal configurations are included as milestones

start goal

Probabilistic Roadmap

The PRM is searched for a path from start to goal

start goal

● Initially empty Graph G

● A configuration q is randomly chosen

● If q ϵ Qfree then add to G

○ <need collision detection>

● Repeat until N vertices chosen

● For each q, select k closest neighbors

● Local planner, Δ, connects q to neighbor q’

● If connect successful (i.e. collision free local
path), add edge (q, q’)

Probabilistic Roadmap –
Constructing the graph

Probabilistic Roadmap –
Constructing the graph

● Connect qinit and qgoal to the roadmap

● Find k nearest neighbors of qinit and qgoal
in roadmap, plan local path Δ

● Repeat until graphs are connected

Probabilistic Roadmap –
Finding the Path

Probabilistic Roadmap –
Finding the Path

Probabilistic Roadmap – Considerations

• Single-Query / Multi-Query

• How are nodes placed?
• Uniform sampling strategies
• Non-uniform sampling strategies

• How are local neighbors found?

• How is collision detection performed?
• Dominates time consumption in PRMs

Probabilistic Roadmap – Ultra Fast

• “Robot Motion Planning on a Chip”, Murray et al. RSS 2016
• Company: Real Time Robotics

• PRM on an FPGA
• Collision detection circuits on each edge in logic gates for massive parallel operation
• 6DOF planning in <1ms

ECE 4960

Rapidly Exploring Random
Trees (RRT)

ECE4960 Fast Robots 44

Prof. Kirstin Hagelskjær Petersen
kirstin@cornell.edu

mailto:kirstin@cornell.edu

1. Maintain a tree of rooted at the starting point
2. Choose a point at random from free space
3. Find the closest configuration already in the tree
4. Extend the tree in the direction of the new configuration

Rapidly Exploring Random Trees (RRT)

1. Algorithm BuildRRT
2. Input: Initial configuration qinit, number of vertices K,

incremental distance Δq)
3. Output: RRT graph G
4. G.init(qinit)
5. for k = 1 to K
6. qrand ← RAND_CONF()
7. qnear ← NEAREST_VERTEX(qrand, G)
8. qnew ← NEW_CONF(qnear, qrand, Δq)
9. G.add_vertex(qnew)
10. G.add_edge(qnear, qnew)
11. return G

Rapidly Exploring Random Trees (RRT)

Rapidly Exploring Random Trees (RRT) – Uniform/biased sampling

S. LaValle, UIUC / OculusAaron Becker, UH, Wolfram Player example

● Sensitive to step-size (∆q)
○ Small: many nodes, closely spaced, slowing down nearest neighbor computation
○ Large: Increased risk of suboptimal plans / not finding a solution

● How are samples chosen?
○ Uniform sampling may need too many samples to find the goal
○ Biased sampling towards goal can ease this problem

● How are local paths generated?
● How are closest neighbors found?

Rapidly Exploring Random Trees (RRT) - Considerations

• RRT Connect
• Two trees rooted at start and goal locations

• RRT*
• Converges towards an optimal solution
• Aaron Becker, UH, Wolfram Player example

• A*-RRT

• Informed RRT*, Real-Time RRT*, Theta*-RRT, etc.

Rapidly Exploring Random Trees (RRT) - Variations

ECE4960 Fast Robots

Modelling path planning as a graph search problem

Real
world

Configuration
Space

Map
Representation

Graph
Search

Graph
Construction

• Breadth first
• Depth first
• Dijstra
• A*

https://pythonrobotics.readthedocs.io/en/latest/modules
/path_planning.html#basic-rrt

https://pythonrobotics.readthedocs.io/en/latest/modules/path_planning.html#basic-rrt

Graph Search Methods

51

Lecture Outline

● Graph Search Algorithms:

○ Djikstra's

○ A*

ECE4960 Fast Robots

• Solves least cost problem between two

states on a (directed) graph

• Algorithms

• Breadth-first

• Depth-first

• Dijkstra

• A* and variants

• D* and variants

Graph Search Overview

White nodes - Unexplored
Black nodes - Explored
Grey nodes - Frontier

ECE4960 Fast Robots

f(n) = total cost of a node n
g(n) = the cost of the path from the start node to node n
h(n) = an estimate of the cost from node n to the goal node
c(n, n’) = edge traversal cost/movement cost in going from node n
to node n’

Graph Search Terms

ECE4960 Fast Robots

Informed Search

• Informed Search is a search
technique that has additional
information about the distance from
the current state to the goal

• Finds the solution more quickly

• Not always optimal

• Ex: A*, D*, Heuristic depth-first and
Heuristic breadth-first search

Informed vs Uninformed Search Methods

Uninformed Search

• An uninformed search is a searching
technique that has no additional
information about the distance from
the current state to the goal

• Longer run times .

• Optimal

• Ex: Breadth-first, Depth-first, Dijkstra

Breadth First Search

ECE4960 Fast Robots

• Corresponds to a “wavefront
expansion” on a 2D grid

• Use a FIFO data structure (queue)
• First-found solution optimal if all

edges have equal cost
• BFS Interactive Animation
• BFS Pseudocode

Breadth First Search

https://www.redblobgames.com/pathfinding/a-star/introduction.html#breadth-first-search
https://en.wikipedia.org/wiki/Breadth-first_search#Pseudocode

Depth First Search

ECE4960 Fast Robots

• Uses LIFO queue
• Memory efficient (can delete full sub-trees)
• DFS Pseudo Code

Depth First Search

https://en.wikipedia.org/wiki/Depth-first_search#Pseudocode

BFS

• Optimal and Complete
• Large Memory requirements
• Cannot be used for large search

problems
• Implementation uses FIFO data

structures

DFS

• Not optimal and not complete
• Memory efficient
• Can be used for large search

problems
• Implementation uses LIFO data

structures

ECE4960 Fast Robots 61

ECE4960 Fast Robots

• An edge-weighted graph is a graph in which each edge is given
a numerical weight

• What about search algorithms on (edge) weighted graphs?

Edge Weighted Graphs

ECE4960 Fast Robots

• Works on a weighted graph
• Dijkstra search on g(n)-sorted HEAP variation of breadth first search

Dijkstra's Algorithm

ECE4960 Fast Robots

• A heuristic technique is any approach to problem solving that employs a
practical method, not guaranteed to be optimal, perfect, or rational, but
instead sufficient for reaching an immediate goal

• A heuristic function for path planning is admissible if it never overestimates
the cost of reaching the goal i.e. the cost it estimates to reach the goal is not
higher than the lowest possible cost from the current point in the path

Heuristic Functions for Informed Search

ECE4960 Fast Robots

• Greedy best-first search tries to expand the node that is closest to the goal, on the
grounds that this is likely to lead to a solution quickly.

Greedy best-first Search

ECE4960 Fast Robots

• Utilizes a cost function for node n

f(n) = total cost of a node
g(n) = the exact cost of the path from the start node to n
h(n) = a heuristic function that estimates the cost of the cheapest path from n to the goal
ϵ = co-efficient used to scale the heuristic function

• Possible heuristic functions: Hamming Distance, Manhattan Distance (L1 norm),
Euclidean Distance L2 Norm

• If the heuristic function is admissible, A* is guaranteed to return a least-cost path from
start to goal.

A* Search

Hart, P.E., Nilsson, N.J. and Raphael, B., 1968. A formal basis for the heuristic determination of minimum
costpaths. IEEE transactions on Systems Science and Cybernetics, 4(2), pp.100-107.

ECE4960 Fast Robots

● ϵ is a coefficient used to scale the heuristic function.

• ϵ = 0 would lead to results similar to an uninformed Dijkstra’s algorithm

• Very large values of ϵ would lead to results similar to the greedy best-first search
algorithm

• A* Pseudo Code

• A* Interactive Comparisons

A* Search

https://en.wikipedia.org/wiki/A*_search_algorithm#Pseudocode
https://www.redblobgames.com/pathfinding/a-star/introduction.html#astar

ECE4960 Fast Robots

A* Search

ECE4960 Fast Robots

Example where Dijkstra’s is faster than A*

Dijkstra’s A*

	Slide Number 1
	Outline of the next module on Navigation
	Outline of the next module on Navigation and Path Planning
	Global Motion Planning with Maps
	Global Motion Planning with Maps
	Global Motion Planning with Maps
	Global Motion Planning with Maps
	Global Motion Planning with Maps
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Graph Construction
	Slide Number 17
	Modelling path planning as a graph search problem
	Map Representation and Graph Construction Methods
	Exact Cell Decomposition
	Approximate Cell Decomposition
	Map Representation and Graph Construction Methods
	Visibility Graphs
	Visibility Graphs
	Visibility Graphs
	Visibility Graphs
	Visibility Graphs
	Map Representation and Graph Construction Methods
	Slide Number 29
	Slide Number 30
	Probabilistic Roadmap
	Probabilistic Roadmap
	Probabilistic Roadmap
	Probabilistic Roadmap
	Probabilistic Roadmap
	Probabilistic Roadmap
	Probabilistic Roadmap
	Probabilistic Roadmap – Constructing the graph
	Probabilistic Roadmap – Constructing the graph
	Probabilistic Roadmap – Finding the Path
	Slide Number 41
	Probabilistic Roadmap – Considerations
	Probabilistic Roadmap – Ultra Fast
	Slide Number 44
	Rapidly Exploring Random Trees (RRT)
	Rapidly Exploring Random Trees (RRT)
	Rapidly Exploring Random Trees (RRT) – Uniform/biased sampling
	Rapidly Exploring Random Trees (RRT) - Considerations
	Rapidly Exploring Random Trees (RRT) - Variations
	Modelling path planning as a graph search problem
	Graph Search Methods
	Lecture Outline
	Graph Search Overview
	Graph Search Terms
	Informed vs Uninformed Search Methods
	Breadth First Search
	Breadth First Search
	Depth First Search
	Depth First Search
	Slide Number 60
	Slide Number 61
	Edge Weighted Graphs
	Dijkstra's Algorithm
	Heuristic Functions for Informed Search
	Greedy best-first Search
	A* Search
	A* Search
	A* Search
	Example where Dijkstra’s is faster than A*

