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ECE4960 Fast Robots

• Local planners
• Global localization and planning

• Configuration space
• Map representations

• Continuous

• Discrete 

• Topological
• Graph representations
• Graph Search Algorithms

• Breadth First Search
• Depth First Search
• Dijkstras
• A*

Outline of the next module on Navigation
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• Navigation breaks down to: Localization, Map Building, Path Planning
Outline of the next module on Navigation and Path Planning



Global Motion Planning with Maps
Occupancy Grid Map (discr. coord)



Global Motion Planning with Maps
Topological Map
(Continuous  Coordinates)
Occupancy grid map
• 2D array: Each cell represents a square of real world (cms)
• Wasteful for big open spaces

x < 6

free y<5

free occupied



Global Motion Planning with Maps
Occupancy Grid Map (discr. coord) K-d Tree Map (Quadtree)



Global Motion Planning with Maps
Topological Map
(Continuous  Coordinates)Topological maps
• Standard graph theory algorithms

• Good abstract representation
• Tradeoff in # of nodes

• complexity vs. accuracy
• Limited information



Global Motion Planning with Maps
Topological Map
(Continuous  Coordinates)

Occupancy Grid Map (discr. coord) K-d Tree Map (Quadtree)



Source: 
http://mitocw.udsm.ac.tz

Overview of Algorithms for Path Planning

Optimal Control
• Solves truly optimal solutions
• Intractable for moderately complex and 

nonconvex problems

Potential Fields
• Impose a math function over the work/C space
• Simple

Graph Search
• Identify a set of edges between nodes 

within the free space
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Planning using 
Potential Fields
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Khatib, 1986

Planning using Potential Fields

• Robot is treated as a point under the influence of a (continuous) 
artificial potential field

• Robot movement becomes similar to a ball rolling down a hill

Khatib, Stanford



Planning using Potential Fields

• The goal creates an attractive force
• Modeled as a spring
• Hooke’s law: F = -kX
• “Parabolic attractor”
• 𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎 𝑞𝑞 = 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎(𝑞𝑞 − 𝑞𝑞𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔)2

• 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 𝑞𝑞 = −𝛻𝛻𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 𝑞𝑞 − 𝑞𝑞𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔
• Obstacles are repulsive forces

• Modeled as charged particles
• Coulomb's law: F= k q1q2 / r2
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Planning using Potential Fields

• Goal generates attractive force
• Modeled as a spring
• Hooke’s law: F = -kX

• Obstacle are repulsive forces
• Modeled as charged particles
• Coulomb's law: F= k q1q2 / r2

• Model navigation as the sum of forces on the robot
• The overall potential field

• 𝑈𝑈 𝑞𝑞 = 𝑈𝑈𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔 𝑞𝑞 + ∑𝑈𝑈𝑔𝑔𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑔𝑔𝑟𝑟𝑜𝑜(𝑞𝑞)
• Robot motion is proportional to induced force

• F(q) = −𝛻𝛻𝑈𝑈(𝑞𝑞)
• e.g. 2 DOF robot will experience

• 𝐹𝐹(𝑞𝑞) = −𝛻𝛻𝑈𝑈(𝑞𝑞) = 𝜕𝜕𝑈𝑈
𝜕𝜕𝑥𝑥

, 𝜕𝜕𝑈𝑈
𝜕𝜕𝜕𝜕



Planning using Potential Fields

• Goal generates attractive force
• Modeled as a spring
• Hooke’s law: F = -kX

• Obstacle are repulsive forces
• Modeled as charged particles
• Coulomb's law: F= k q1q2 / r2

• Model navigation as the sum of forces on the robot
• Pitfalls / local minima

• U-shaped obstacles
• Long walls
• Solutions

• Incorporate high-level planner
• Incorporate procedural planner
• Adapt the field to have gradual repulsion
• Adding stochasticity



Source: 
http://mitocw.udsm.ac.tz

Optimal Control
• Solves truly optimal solutions
• Intractable for moderately complex and 

nonconvex problems

Potential Fields
• Impose a math function over the work/C space
• Simple

Graph Search
• Identify a set of edges between nodes 

within the free space

Overview of Algorithms for Path Planning



ECE4960 Fast Robots

• Transform continuous/discrete/topological map to a discrete graph
• Why graphs?

• Model the path planning problem as a search problem
• Graph theory has lots of tools
• Real-time capable algorithms
• Can accommodate for evolving maps

Graph Construction
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Graph Construction
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ECE4960 Fast Robots

Modelling path planning as a graph search problem 

Real 
system

Configuration 
Space

Map 
Representation

Graph 
Search

Graph 
Construction

Workspace Configuration space



ECE4960 Fast Robots

• Grid Worlds
• Exact Cell Decomposition
• Fixed Cell Decomposition
• Approximate Cell Decomposition

• Visibility graphs 

• Probabilistic Roadmaps
• RRT

Map Representation and Graph Construction Methods

1. Divide space into simple, connected regions, or “cells”
2. Determine adjacency of open cells 
3. Construct a connectivity graph
4. Find cells with initial and goal configuration 
5. Search for a path in the connectivity graph to join them
6. From the sequence of cells, compute a path within each cell

• e.g. passing through the midpoints of cell boundaries or 
by sequence of wall following movements



ECE4960 Fast Robots

• Decomposition
• Break down the map into cells based on 

geometric criticality
• The map representation tessellates the 

space into areas of free space
• Abstraction

• The position of the robot with the each 
cell of free space does not matter

• What matters is the robot’s ability to 
traverse from each free cell to adjacent 
free cell

Exact Cell Decomposition
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Approximate Cell Decomposition

(Lab 9)

Adaptive Cell Decomposition



ECE4960 Fast Robots

• Grid World
• Exact Cell Decomposition
• Fixed Cell Decomposition
• Approximate Cell Decomposition

• Visibility graphs 

• Probabilistic Roadmaps
• RRT

Map Representation and Graph Construction Methods
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• Connect initial and goal locations with all visible vertices

Visibility Graphs

Ioannis Rekleitis, 
South Carolina



ECE4960 Fast Robots

• Connect initial and goal locations with all visible vertices
• Connect each obstacle vertex to every visible obstacle vertex

Visibility Graphs

Ioannis Rekleitis, 
South Carolina



ECE4960 Fast Robots

• Connect initial and goal locations with all visible vertices
• Connect each obstacle vertex to every visible obstacle vertex
• Remove edges that intersect the interior of an obstacle

Visibility Graphs

Ioannis Rekleitis, 
South Carolina



ECE4960 Fast Robots

• Connect initial and goal locations with all visible vertices
• Connect each obstacle vertex to every visible obstacle vertex
• Remove edges that intersect the interior of an obstacle
• Plan on the resulting graph

Visibility Graphs

Ioannis Rekleitis, 
South Carolina



ECE4960 Fast Robots

• Connect initial and goal locations with all visible vertices
• Connect each obstacle vertex to every visible obstacle vertex
• Remove edges that intersect the interior of an obstacle
• Plan on the resulting graph

Visibility Graphs

Ioannis Rekleitis, 
South Carolina
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• Graph Construction
• Exact Cell Decomposition
• Fixed Cell Decomposition
• Approximate Cell Decomposition

• Visibility graphs 

• Probabilistic Roadmaps
• RRT

Map Representation and Graph Construction Methods



• Explicit geometry-based planners are impractical in high dimensional spaces

• Sampling-based planners

• Often efficient in high dimensional spaces

• Rather than computing the C-Space explicitly, we sample it

• Simply need to know if a robot configuration is in collision
• Collision detection is a separate module which can be tailored to the application

• As collision detection improves, so do these algithms 

Sampling-Based Planners
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Probabilistic Roadmaps
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Free/feasible spaceSpace ℜn free/forbidden space

Probabilistic Roadmap



Probabilistic Roadmap

Configurations are sampled by picking coordinates at random



Probabilistic Roadmap

Sampled configurations are tested for collision



Probabilistic Roadmap

Each milestone is linked by straight paths to its nearest neighbors



Probabilistic Roadmap

The collision-free links are retained as local paths to form the PRM



Probabilistic Roadmap

The start and goal configurations are included as milestones

start goal



Probabilistic Roadmap

The PRM is searched for a path from start to goal

start goal



● Initially empty Graph G

● A configuration q is randomly chosen

● If q ϵ Qfree then add to G 

○ <need collision detection>

● Repeat until N vertices chosen

● For each q, select k closest neighbors

● Local planner, Δ, connects q to neighbor q’

● If connect successful (i.e. collision free local 
path), add edge (q, q’)

Probabilistic Roadmap –
Constructing the graph



Probabilistic Roadmap –
Constructing the graph



● Connect qinit and qgoal to the roadmap

● Find k nearest neighbors of qinit and qgoal
in roadmap, plan local path Δ

● Repeat until graphs are connected

Probabilistic Roadmap –
Finding the Path



Probabilistic Roadmap –
Finding the Path



Probabilistic Roadmap – Considerations

• Single-Query / Multi-Query

• How are nodes placed?
• Uniform sampling strategies
• Non-uniform sampling strategies

• How are local neighbors found?

• How is collision detection performed?
• Dominates time consumption in PRMs



Probabilistic Roadmap – Ultra Fast

• “Robot Motion Planning on a Chip”, Murray et al. RSS 2016
• Company: Real Time Robotics

• PRM on an FPGA 
• Collision detection circuits on each edge in logic gates for massive parallel operation
• 6DOF planning in <1ms
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Rapidly Exploring Random 
Trees (RRT)
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1. Maintain a tree of rooted at the starting point
2. Choose a point at random from free space
3. Find the closest configuration already in the tree
4. Extend the tree in the direction of the new configuration

Rapidly Exploring Random Trees (RRT)



1. Algorithm BuildRRT
2. Input: Initial configuration qinit, number of vertices K, 

incremental distance Δq)
3. Output: RRT graph G
4. G.init(qinit)
5. for k = 1 to K
6. qrand ← RAND_CONF()
7. qnear ← NEAREST_VERTEX(qrand, G)
8. qnew ← NEW_CONF(qnear, qrand, Δq)
9. G.add_vertex(qnew)
10. G.add_edge(qnear, qnew)
11. return G

Rapidly Exploring Random Trees (RRT)



Rapidly Exploring Random Trees (RRT) – Uniform/biased sampling

S. LaValle, UIUC / OculusAaron Becker, UH, Wolfram Player example



● Sensitive to step-size (∆q)
○ Small: many nodes, closely spaced, slowing down nearest neighbor computation
○ Large: Increased risk of suboptimal plans / not finding a solution

● How are samples chosen?
○ Uniform sampling may need too many samples to find the goal
○ Biased sampling towards goal can ease this problem

● How are local paths generated?
● How are closest neighbors found?

Rapidly Exploring Random Trees (RRT) - Considerations



• RRT Connect
• Two trees rooted at start and goal locations

• RRT*
• Converges towards an optimal solution
• Aaron Becker, UH, Wolfram Player example

• A*-RRT

• Informed RRT*, Real-Time RRT*, Theta*-RRT, etc.

Rapidly Exploring Random Trees (RRT) - Variations
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Modelling path planning as a graph search problem 

Real 
world

Configuration 
Space

Map 
Representation

Graph 
Search

Graph 
Construction

• Breadth first
• Depth first
• Dijstra
• A*

https://pythonrobotics.readthedocs.io/en/latest/modules
/path_planning.html#basic-rrt

https://pythonrobotics.readthedocs.io/en/latest/modules/path_planning.html#basic-rrt


Graph Search Methods

51



Lecture Outline

● Graph Search Algorithms:

○ Djikstra's

○ A*
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• Solves least cost problem between two 

states on a (directed) graph

• Algorithms

• Breadth-first

• Depth-first

• Dijkstra

• A* and variants

• D* and variants

Graph Search Overview

White nodes - Unexplored
Black nodes - Explored
Grey nodes  - Frontier 
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f(n)  = total cost of a node n
g(n) = the cost of the path from the start node to node n
h(n) = an estimate of the cost from node n to the goal node
c(n, n’) = edge traversal cost/movement cost in going from node n 
to node n’

Graph Search Terms
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Informed Search

• Informed Search is a search 
technique that has additional 
information about the distance from 
the current state to the goal

• Finds the solution more quickly

• Not always optimal

• Ex: A*, D*, Heuristic depth-first and 
Heuristic breadth-first search

Informed vs Uninformed Search Methods

Uninformed Search

• An uninformed search is a searching 
technique that has no additional 
information about the distance from 
the current state to the goal

• Longer run times                            .

• Optimal

• Ex: Breadth-first, Depth-first, Dijkstra



Breadth First Search
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• Corresponds to a “wavefront 
expansion” on a 2D grid

• Use a FIFO data structure (queue)
• First-found solution optimal if all 

edges have equal cost
• BFS Interactive Animation
• BFS Pseudocode

Breadth First Search

https://www.redblobgames.com/pathfinding/a-star/introduction.html#breadth-first-search
https://en.wikipedia.org/wiki/Breadth-first_search#Pseudocode


Depth First Search
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• Uses LIFO queue
• Memory efficient (can delete full sub-trees)
• DFS Pseudo Code

Depth First Search

https://en.wikipedia.org/wiki/Depth-first_search#Pseudocode


BFS

• Optimal and Complete
• Large Memory requirements
• Cannot be used for large search 

problems
• Implementation uses FIFO data 

structures

DFS

• Not optimal and not complete
• Memory efficient
• Can be used for large search 

problems
• Implementation uses LIFO data 

structures



ECE4960 Fast Robots 61



ECE4960 Fast Robots

• An edge-weighted graph is a graph in which each edge is given 
a numerical weight

• What about search algorithms on (edge) weighted graphs?

Edge Weighted Graphs
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• Works on a weighted graph
• Dijkstra search on g(n)-sorted HEAP variation of breadth first search

Dijkstra's Algorithm
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• A heuristic technique is any approach to problem solving that employs a 
practical method, not guaranteed to be optimal, perfect, or rational, but 
instead sufficient for reaching an immediate goal

• A heuristic function for path planning is admissible if it never overestimates 
the cost of reaching the goal i.e. the cost it estimates to reach the goal is not 
higher than the lowest possible cost from the current point in the path

Heuristic Functions for Informed Search



ECE4960 Fast Robots

• Greedy best-first search tries to expand the node that is closest to the goal, on the 
grounds that this is likely to lead to a solution quickly.

Greedy best-first Search
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• Utilizes a cost function for node n

f(n)  = total cost of a node
g(n) = the exact cost of the path from the start node to n
h(n) = a heuristic function that estimates the cost of the cheapest path from n to the goal
ϵ = co-efficient used to scale the heuristic function

• Possible heuristic functions: Hamming Distance, Manhattan Distance (L1 norm), 
Euclidean Distance L2 Norm

• If the heuristic function is admissible, A* is guaranteed to return a least-cost path from 
start to goal.

A* Search

Hart, P.E., Nilsson, N.J. and Raphael, B., 1968. A formal basis for the heuristic determination of minimum 
costpaths. IEEE transactions on Systems Science and Cybernetics, 4(2), pp.100-107.
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● ϵ is a coefficient used to scale the heuristic function.

• ϵ = 0 would lead to results similar to an uninformed Dijkstra’s algorithm

• Very large values of ϵ  would lead to results similar to the greedy best-first search 
algorithm

• A* Pseudo Code

• A* Interactive Comparisons

A* Search

https://en.wikipedia.org/wiki/A*_search_algorithm#Pseudocode
https://www.redblobgames.com/pathfinding/a-star/introduction.html#astar
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A* Search
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Example where Dijkstra’s is faster than A*

Dijkstra’s A*
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