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Outline of the next module on Navigation

e Local planners

e Global localization and planning
e Configuration space
 Map representations

e Continuous

e Discrete =4

e Topological

e Graph representations ><
e Graph Search Algorithms )))
e Breadth First Search
e Depth First Search

e Dijkstras D
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Outline of the next module on Navigation and Path Planning
- Navigation breaks down to: Localization, Map Building, Path Planning

Global Map and State

ESTIMATION

Information
Extraction

Raw Sensor
Data

PERCEPTION

ONINNV1d

104d1NOD
NOILOIN



Global Motion Planning with Maps

Occupancy Grid Map (discr. coord)




Global Motion Planning with Maps

Occupancy grid map
e 2D array: Each cell represents a square of real world (cms)
e Wasteful for big open spaces




Global Motion Planning with Maps

Occupancy Grid Map (discr. coord) K-d Tree Map (Quadtree)




Global Motion Planning with Maps

Topological maps
e Standard graph theory algorithms
e Good abstract representation
e Tradeoff in # of nodes
e complexity vs. accuracy
e Limited information
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Global Motion Planning with Maps

Occupancy Grid Map (discr. coord) K-d Tree Map (Quadtree) Topological Map

I ; . (Continuous Coordinates)
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Overview of Algorithms for Path Planning

Optimal Control

e Solves truly optimal solutions

e Intractable for moderately complex and
nonconvex problems

Potential Fields
 Impose a math function over the work/C space
e Simple

Graph Search
e |dentify a set of edges between nodes
within the free space
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Planning using Potential Fields

 Robot is treated as a point under the influence of a (continuous)
artificial potential field
e Robot movement becomes similar to a ball rolling down a hill

Khatib, Stanford
Khatib, 1986




Planning using Potential Fields
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e The goal creates an attractive force

e Modeled as a spring

e Hooke’s law: F = -kX

e “Parabolic attractor”

* Uatt(Q) = Kqt:(q — qgoal)2

° Fatt(Q) = —VUg = katt(q - ngal)
e QObstacles are repulsive forces

* Modeled as charged particles
e Coulomb's law: F=k q,q, / r?

A, " = e

r
r
r
b
¥
)
b
!

( 2
1 1 :
0.5k _ Jif p(q) < po
° Urep (Q) = 9 TP \p(@) po : >
K 0 Jif p(q) = po
)

1 1 1 q—Qobst ;
k — — , 1 <
TP \p(@) po/ P(@? p@) fpla) = po

t () = 0 if p(@) = po




Planning using Potential Fields

 Goal generates attractive force
e Modeled as a spring
e Hooke’s law: F = -kX
e Obstacle are repulsive forces
e Modeled as charged particles
e Coulomb's law: F=k q,q, / r?
e Model navigation as the sum of forces on the robot
e The overall potential field

* U(q) = Ugoal(‘]) + 2 Uobstactes (9)
e Robot motion is proportional to induced force

* F(q) =-VU(q)
e e.g.2 DOF robot will experience

« F(g)=-VU@) = (5.5
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Planning using Potential Fields

 Goal generates attractive force
e Modeled as a spring
e Hooke’s law: F = -kX
e Obstacle are repulsive forces
e Modeled as charged particles
e Coulomb's law: F=k q,q, / r?
e Model navigation as the sum of forces on the robot
Pitfalls / local minima
e U-shaped obstacles
e Long walls
e Solutions
e |Incorporate high-level planner
* |ncorporate procedural planner
 Adapt the field to have gradual repulsion
e Adding stochasticity
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Overview of Algorithms for Path Planning

Optimal Control

e Solves truly optimal solutions

e Intractable for moderately complex and
nonconvex problems

Potential Fields
 Impose a math function over the work/C space
e Simple

Graph Search
e |dentify a set of edges between nodes
within the free space




Graph Construction

e Transform continuous/discrete/topological map to a discrete graph

e Why graphs?
e Model the path planning problem as a search problem
 Graph theory has lots of tools

e Real-time capable algorithms (D
\\ b J
e Can accommodate for evolving maps >/ (ﬁ\) ,.
L 1
\\\\__::/&
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Modelling path planning as a graph search problem

Real Configuration Map Graph
system Space Representation Search

Workspace Configuration space

Graph

Construction

ECE4960 Fast Robots



Map Representation and Graph Construction Methods

e Grid Worlds
« Exact Cell Decomposition
* Fixed Cell Decomposition
o Approximate Cell Decomposition

e Visibility graphs
Divide space into simple, connected regions, or “cells”

Determine adjacency of open cells
Construct a connectivity graph
Find cells with initial and goal configuration
Search for a path in the connectivity graph to join them
From the sequence of cells, compute a path within each cell
e e.g. passing through the midpoints of cell boundaries or
by sequence of wall following movements

* Probabilistic Roadmaps
e RRT

oOghowNE
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Exact Cell Decomposition

e Decomposition

* Break down the map into cells based on
geometric criticality

 The map representation tessellates the
space into areas of free space
e Abstraction

e The position of the robot with the each
cell of free space does not matter

 What matters is the robot’s ability to
traverse from each free cell to adjacent
free cell

s~/ ECE4960 Fast Robots




Approximate Cell Decomposition

(Lab 9)

Bel(X, = (0,0,0))

Adaptive Cell Decomposition

ECE4960 Fast Robots
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Map Representation and Graph Construction Methods

e Grid World
« Exact Cell Decomposition
* Fixed Cell Decomposition
o Approximate Cell Decomposition

e Visibility graphs

* Probabilistic Roadmaps
e RRT
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Visibility Graphs

e Connect initial and goal locations with all visible vertices

loannis Rekleitis,
South Carolina

ECE4960 Fast Robots



Visibility Graphs

e Connect initial and goal locations with all visible vertices
o Connect each obstacle vertex to every visible obstacle vertex

loannis Rekleitis,
South Carolina
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Visibility Graphs

e Connect initial and goal locations with all visible vertices
o Connect each obstacle vertex to every visible obstacle vertex
« Remove edges that intersect the interior of an obstacle

loannis Rekleitis,
South Carolina
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Visibility Graphs

e Connect initial and goal locations with all visible vertices

o Connect each obstacle vertex to every visible obstacle vertex
« Remove edges that intersect the interior of an obstacle

« Plan on the resulting graph

loannis Rekleitis,
South Carolina

ECE4960 Fast Robots



Visibility Graphs

e Connect initial and goal locations with all visible vertices

o Connect each obstacle vertex to every visible obstacle vertex
« Remove edges that intersect the interior of an obstacle

« Plan on the resulting graph

loannis Rekleitis,
South Carolina
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Map Representation and Graph Construction Methods

e Graph Construction
« Exact Cell Decomposition
* Fixed Cell Decomposition
o Approximate Cell Decomposition

* Visibility graphs

» Probabilistic Roadmaps
e RRT Conf|gurat|0n Space Dror Atariah & Ginter Rote

Freie Universitat Berlin

Visualization | yaen 201
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Sampling-Based Planners

- Explicit geometry-based planners are impractical in high dimensional spaces
- Sampling-based planners

. Often efficient in high dimensional spaces

. Rather than computing the C-Space explicitly, we sample it

. Simply need to know if a robot configuration is in collision
. Collision detection is a separate module which can be tailored to the application

. As collision detection improves, so do these algithms
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Probabilistic Roadmaps
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— — Lydia Kavraki, 1996
Rice Univeristy
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Probabilistic Roadmap




Probabilistic Roadmap




Probabilistic Roadmap
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Probabilistic Roadmap




Probabilistic Roadmap —
Constructing the graph

Algorithm 6 Roadmap Construction Algorithm

Input:
n : number of nodes to put in the roadmap
|nitia||y empty Graph G k : number of closest neighbors to examine for each configuration
Output:
A configuration q is randomly chosen Aroadmap G = (V. E)
V<0
If g € Q4 then add to G CE e :ﬂ
o <need collision detection> - while [V < n do
repeat
Repeat until N vertices chosen B q < arandom configuration in @
5: - until g 1s collision-free
For each q, select k closest neighbors 7. V< VUig}
8: end while
Local planner, A, connects q to neighbor ¢’ o. for all g € V do
. o 0: N, < the k closest neighbors of ¢ chosen from V according to dist
If connect successful (i.e. collision free local . forall¢ € N, do

path), add edge (q, ') if (¢,q") & E and A(q, ¢') # NIL then
E+—EU{(g,q))
end if
end for




Probabilistic Roadmap —
Constructing the graph

Figure 7.3 Anexample of a roadmap for a point robot in a two-dimensional Euclidean space.
The gray areas are obstacles. The empty circles correspond to the nodes of the roadmap. The
straight lines between circles correspond to edges. The number of & closest neighbors for the
construction of the roadmap is three. The degree of a node can be greater than three since it
may be included in the closest neighbor list of many nodes.




Algorithm 7 Solve Query Algorithm

Probabilistic Roadmap — S
Finding the Path §iir: the initial configuration

Ggoa: the goal configuration

k: the number of closest neighbors to examine for each configuration

G = (V, E): the roadmap computed by algorithm 6

Connect g, and q,,, to the roadmap Output:

A path from gini 10 ggou Or failure

the k closest neighbors of g, from V according to disr

Flnd k neareSt nelghbors Of qinit and qgoal 2: N, . + the k closest neighbors of ggoa from V according to dist
in roadmap, plan local path A ¥

{Ginin) Y {Geom} U V
set ¢° to be the closest neighbor of g In N,
. i repeal
Repeat until graphs are connected ;i Agion, ') # NIL then
E — (gmng)VE
else
set g’ to be the next closest neighbor of g In N
end if
: until a connection was succesful or the set N,  is empty
set ¢° to be the closest neighbor of g, In NV,
repeat
if A(Ggoals ') ¥ NIL then
E —(Qea. q)JE
else
set ¢ to be the next closest neighbor of ggoq in N, __
end if
until a connection was succesful or the set N, is empty
P « shortest path(@init, Geoal. G)
if P is not empty then
return £
else
return failure
end if




Probabilistic Roadmap —
Finding the Path

Figure 7.4 An example of how to solve a query with the roadmap from figure 7.3. The
configurations @iy and ... are first connected to the roadmap through ¢ and g”. Then a
graph-search algorithm returns the shortest path denoted by the thick black lines.




Probabilistic Roadmap — Considerations

. Single-Query / Multi-Query
- How are nodes placed?
.- Uniform sampling strategies
.- Non-uniform sampling strategies

- How are local neighbors found?

- How Is collision detection performed?
. Dominates time consumption in PRMs




Probabilistic Roadmap — Ultra Fast

“Robot Motion Planning on a Chip”, Murray et al. RSS 2016 v [‘DthiCS
Company: Real Time Robotics

* PRM onan FPGA
Collision detection circuits on each edge in logic gates for massive parallel operation
e 6DOF planning in <1ms

@ (a&!b&c&d&le) |
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Fig. 3: Our process for producing robot-specific motion planning circuitry. Given a robot description (a), we construct a PRM
(b), most likely subsampled for coverage from a much larger PRM. We discretize the robot’s reachable space into depth pixels
and, for each edge 7 on the PRM, precompute all the depth pixels that collide with the corresponding swept volume (c). We
use these values to construct a logical expression that, given the coordinates of a depth pixel encoded in binary, returns t rue
if that depth pixel collides with edge ¢ (d); this logical expression is optimized and used to build a collision detection circuit
(CDC) (e). For each edge in the PRM there is one such circuit. When the robot wishes to construct a motion plan, it perceives
its environment, determines which depth pixels correspond to obstacles, and transmits their binary representations to every
CDC (f). All CDCs perform collision detection simultaneously, in parallel for each depth pixel, storing a bit which indicates
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Rapidly Exploring Random Trees (RRT)

1. Maintain a tree of rooted at the starting point
2. Choose a point at random from free space Q
3. Find the closest configuration already in the tree ©

4. Extend the tree in the direction of the new configuration /



Rapidly Exploring Random Trees (RRT)

1. Algorithm BuildRRT
2. Input: Initial configuration qg;,j¢» humber of vertices K,
incremental distance AQ)

Output: RRT graph G

G. INTT(jnie)

for Kk =1 to K
grand < RAND CONF ()
gnear « NEAREST VERTEX (grand, G)
gnew « NEW CONF (gnear, grand, AqQ)
G.add_vertex(gnew)

10. G.add_edge(gnear, qgnew)

11. return G

© 0 ~NO 01 b~ W



Rapidly Exploring Random Trees (RRT) — Uniform/biased sampling

Aaron Becker, UH, Wolfram Player example S. LaValle, UIUC / Oculus




Rapidly Exploring Random Trees (RRT) - Considerations

Sensitive to step-size (Aq)
o Small: many nodes, closely spaced, slowing down nearest neighbor computation

o Large: Increased risk of suboptimal plans / not finding a solution

How are samples chosen?
o Uniform sampling may need too many samples to find the goal
o Biased sampling towards goal can ease this problem

e How are local paths generated?

e How are closest neighbors found?



Rapidly Exploring Random Trees (RRT) - Variations

- RRT Connect

- Two trees rooted at start and goal locations
- RRT*

. Converges towards an optimal solution

.- Aaron Becker, UH, Wolfram Player example

- A*-RRT

. Informed RRT*, Real-Time RRT*, Theta*-RRT, etc.



Modelling path planning as a graph search problem

Real Configuration Map
world Space Representation

é h

Graph Graph
Construction Search

\_ J

Breadth first
e Depth first
e Dijstra

° A*

<~/ ECE4960 Fast Robots


https://pythonrobotics.readthedocs.io/en/latest/modules/path_planning.html#basic-rrt

Graph Search Methods



« Graph Search Algorithms:
o Djikstra's

o A*



Graph Search Overview

e Solves least cost problem between two

states on a (directed) graph

e Algorithms

e Breadth-first

explored nodes‘

a0

e Depth-first

e Dijkstra

F)
i
I

e A* and variants

e D* and variants

ECE4960 Fast Robots




Graph Search Terms

f(n) = total cost of a node n
g(n) = the cost of the path from the start node to node n
h(n) = an estimate of the cost from node n to the goal node

c(n, n’) = edge traversal cost/movement cost in going from node n
to node n’

< o hor"“ ECE4960 Fast Robots



Informed vs Uninformed Search Methods

Informed Search Uninformed Search

* Informed Search is a search  An uninformed search is a searching
technique that has additional technique that has no additional
information about the distance from information about the distance from
the current state to the goal the current state to the goal

e Finds the solution more quickly e Longer run times

* Not always optimal e Optimal

* Ex: A*, D*, Heuristic depth-first and e Ex: Breadth-first, Depth-first, Dijkstra
Heuristic breadth-first search

<~/ ECE4960 Fast Robots
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Breadth First Search

e Corresponds to a “wavefront
expansion” on a 2D grid

e Use a FIFO data structure (queue)

* First-found solution optimal if all
edges have equal cost

ECE4960 Fast Robots

. obstacle cell

17 | cell with
distance value

Fig. 1: NF1: put in each cell its L1-distance

from the goal position (used also in local
path planning)


https://www.redblobgames.com/pathfinding/a-star/introduction.html#breadth-first-search
https://en.wikipedia.org/wiki/Breadth-first_search#Pseudocode

Depth First Search




Depth First Search

Uses LIFO queue

Memory efficient (can delete full sub-trees)

ECE4960 Fast Robots


https://en.wikipedia.org/wiki/Depth-first_search#Pseudocode

BFS

DFS

e Optimal and Complete
* Large Memory requirements

e Cannot be used for large search
problems

* Implementation uses FIFO data
structures

Not optimal and not complete
Memory efficient

Can be used for large search
problems

Implementation uses LIFO data
structures




ECE4960 Fast Robots

61



Edge Weighted Graphs

An edge-weighted graph is a graph in which each edge is given
a numerical weight

What about search algorithms on (edge) weighted graphs?

unlabeled graph

edge-labeled graph

ECE4960 Fast Robots



Dijkstra's Algorithm

- Works on a weighted graph

« Dijkstra search on g(n)-sorted HEAP variation of breadth first search

<~/ ECE4960 Fast Robots



Heuristic Functions for Informed Search

- A heuristic technique is any approach to problem solving that employs a
practical method, not guaranteed to be optimal, perfect, or rational, but
instead sufficient for reaching an immediate goal

« A heuristic function for path planning is admissible if it never overestimates
the cost of reaching the goal i.e. the cost it estimates to reach the goal is not
higher than the lowest possible cost from the current point in the path

~/ ECE4960 Fast Robots



Greedy best-first Search

e Greedy best-first search tries to expand the node that is closest to the goal, on the
grounds that this is likely to lead to a solution quickly.

ECE4960 Fast Robots



A* Search

s
o
1

* Utilizes a cost function for node n

gy = i ' I €.k TR

f(n) = total cost of a node

g(n) =the exact cost of the path from the start node to n

h(n) = a heuristic function that estimates the cost of the cheapest path from n to the goal

€ = co-efficient used to scale the heuristic function

e Possible heuristic functions: Hamming Distance, Manhattan Distance (L1 norm),
Euclidean Distance L2 Norm

e If the heuristic function is admissible, A* is guaranteed to return a least-cost path from




A* Search

® € is a coefficient used to scale the heuristic function.
e € = 0 would lead to results similar to an uninformed Dijkstra’s algorithm

e Very large values of € would lead to results similar to the greedy best-first search
algorithm

ECE4960 Fast Robots


https://en.wikipedia.org/wiki/A*_search_algorithm#Pseudocode
https://www.redblobgames.com/pathfinding/a-star/introduction.html#astar

A* Search

g=2.4

h=2.4
g:EE g‘=24

h=34 h=38




Example where Dijkstra’s is faster than A*

Dijkstra’s A*
ECE4960 Fast Robots
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