Fast Robots

- Linear systems review
- Eigenvectors and eigenvalues
- Stability
- Discrete time systems
- Linearizing non-linear systems
- Controllability
- Inverted pendulum dynamics

$$\dot{x} = Ax + Bu$$

This should look familiar from...

- MATH 2940 Linear Algebra
- ECE3250 Signals and systems
- ECE5210 Theory of linear systems
- MAE3260 System Dynamics
- etc...

Linear Systems – "review of review"

$$\dot{x} = Ax$$

$$x(t) = e^{At}x(0)$$

$$T = \begin{bmatrix} \xi_1 & \xi_2 & \dots & \xi_n \end{bmatrix}$$

$$\mathbf{D} = \begin{bmatrix} \lambda_1 & & & 0 \\ & \lambda_2 & & \\ & & \dots & \\ 0 & & \lambda_n \end{bmatrix}$$

$$AT = TD$$

$$e^{At} = Te^{Dt}T^{-1}$$

$$x(t) = Te^{Dt}T^{-1}x(0)$$

$$\lambda = a + ib$$
, stable iff a<0

$$x(k+1) = \tilde{A}x(k), \tilde{A} = e^{A\Delta t}$$

• Stability in discrete time:
$$\tilde{\lambda}^n = R^n e^{in\theta}$$
, stable iff $R<1$

- Linear systems review
- Eigenvectors and eigenvalues
- Stability
- Discrete time systems
- Linearizing non-linear systems
- Controllability
- Inverted pendulum dynamics

This should look familiar from..

- MATH 2940 Linear Algebra
- ECE3250 Signals and systems
- ECE5210 Theory of linear systems
- MAE3260 System Dynamics
- etc...

Basic Steps to linearize a nonlinear system

- 1. Find some fixed points
 - \overline{x} s.t. $f(\overline{x}) = 0$
 - (basically points where the system doesn't move)
- 2. Linearize about \bar{x}
 - $\bullet \quad \frac{Df}{Dx}|_{\bar{x}} = \left[\frac{\partial f_i}{\partial x_j}\right] \qquad \leftarrow \text{"Jacobian"}$

$$\dot{x} = f(x) \Rightarrow \dot{x} = Ax$$

Example
$$\dot{x_1} = f_1(x_1, x_2) = x_1 x_2$$
 $\dot{x_2} = f_2(x_1, x_2) = x_1^2 + x_2^2$

$$\frac{Df}{Dx} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix}$$

$$\frac{Df}{Dx} = \begin{bmatrix} x_2 & x_1 \\ 2x_1 & 2x_2 \end{bmatrix}$$

Basic Steps to linearize a nonlinear system

- 1. Find some fixed points
 - \bar{x} s.t. $f(\bar{x}) = 0$
 - (basically points where the system doesn't move)
- 2. Linearize about \bar{x}
 - $\bullet \quad \frac{Df}{Dx}|_{\bar{x}} = \left[\frac{\partial f_i}{\partial x_i}\right] \quad \leftarrow \text{"Jacobian"}$
- If you zoom in on \bar{x} , your system will look linear!

$$\int_{\mathsf{x}=\left[\begin{matrix}\theta\\\dot{\theta}\end{matrix}\right]}$$

$$\dot{x} = f(x) \Rightarrow \dot{x} = Ax$$

Example $\dot{x_1} = f_1(x_1, x_2) = x_1 x_2$ $\dot{x_2} = f_2(x_1, x_2) = x_1^2 + x_2^2$

$$\frac{Df}{Dx} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix}$$

$$\frac{Df}{Dx} = \begin{bmatrix} x_2 & x_1 \\ 2x_1 & 2x_2 \end{bmatrix}$$

Basic Steps to linearize a nonlinear system

- 1. Find some fixed points
 - \bar{x} s.t. $f(\bar{x}) = 0$
 - (basically points where the system doesn't move)
- 2. Linearize about \bar{x}
 - $\bullet \quad \frac{Df}{Dx}|_{\bar{x}} = \left[\frac{\partial f_i}{\partial x_i}\right] \quad \leftarrow \text{"Jacobian"}$
- If you zoom in on \bar{x} , your system will look linear! $\dot{x} = f(x)$

$$\dot{x} = f(x) \Rightarrow \dot{x} = Ax$$

$$\dot{x} = f(\bar{x}) + \frac{Df}{Dx}|_{\bar{x}}(x - \bar{x}) + \frac{D^2f}{D^2x}|_{\bar{x}}(x - \bar{x})^2 + \frac{D^3f}{D^3x}|_{\bar{x}}(x - \bar{x})^3 + \cdots$$

Basic Steps to linearize a nonlinear system

- 1. Find some fixed points
 - \bar{x} s.t. $f(\bar{x}) = 0$
 - (basically points where the system doesn't move)
- 2. Linearize about \bar{x}
 - $\bullet \quad \frac{Df}{Dx}|_{\bar{x}} = \left[\frac{\partial f_i}{\partial x_j}\right] \quad \leftarrow \text{"Jacobian"}$
- If you zoom in on \bar{x} , your system will look linear! $\dot{x} = f(x)$
- Good control will keep you close to the fixed point, where your model is valid!

$$\dot{x} = f(x) \Rightarrow \dot{x} = Ax$$

$$\dot{x} = f(\bar{x}) + \frac{Df}{Dx}|_{\bar{x}}(x - \bar{x}) + \frac{D^2f}{D^2x}|_{\bar{x}}(x - \bar{x})^2 + \frac{D^3f}{D^3x}|_{\bar{x}}(x - \bar{x})^3 + \cdots$$

$$= \frac{DJ}{Dx}|_{\bar{x}}\Delta x \qquad \Rightarrow \Delta \dot{x} = A\Delta x$$

ECE4960 Fast Robots

Basic Steps to linearize a nonlinear system

- 1. Find some fixed points
 - \bar{x} s.t. $f(\bar{x}) = 0$
 - (basically points where the system doesn't move)
- 2. Linearize about \bar{x}

- If you zoom in on \bar{x} , your system will look linear! $\dot{x} = f(x)$
- Good control will keep you close to the fixed point, where your model is valid!

$$\dot{x} = f(x) \Rightarrow \dot{x} = Ax$$

$$\dot{x} = f(\bar{x}) + \frac{Df}{Dx}|_{\bar{x}}(x - \bar{x}) + \frac{D^2f}{D^2x}|_{\bar{x}}(x - \bar{x})^2 + \frac{D^3f}{D^3x}|_{\bar{x}}(x - \bar{x})^3 + \cdots$$

$$= \frac{Df}{Dx}|_{\bar{x}}\Delta x \qquad \Rightarrow \Delta \dot{x} = A\Delta x$$

Basic Steps to linearize a nonlinear system

- 1. Find some fixed points
 - \bar{x} s.t. $f(\bar{x}) = 0$
- 2. Linearize about $ar{x}$

$$\bullet \quad \frac{Df}{Dx}|_{\bar{X}} = \left[\frac{\partial f_i}{\partial x_j}\right]$$

$$\dot{x} = f(x) \Rightarrow \dot{x} = Ax$$

Basic Steps to linearize a nonlinear system

- 1. Find some fixed points
 - \bar{x} s.t. $f(\bar{x}) = 0$
- 2. Linearize about \bar{x}

$$\bullet \quad \frac{Df}{Dx}|_{\bar{x}} = \left[\frac{\partial f_i}{\partial x_j}\right]$$

$$\dot{x} = f(x) \Rightarrow \dot{x} = Ax$$

Eq. of motion

•
$$\tau = -mgLsin(\theta)$$

•
$$\tau = I\ddot{\theta}$$

•
$$I\ddot{\theta} = -mgLsin(\theta)$$

Point mass inertia

•
$$I = mL^2$$

•
$$mL^2\ddot{\theta} = -mgLsin(\theta)$$

•
$$\ddot{\theta} = -\frac{g}{L}\sin(\theta) - \delta\dot{\theta}$$

friction

Basic Steps to linearize a nonlinear system

- 1. Find some fixed points
 - \bar{x} s.t. $f(\bar{x}) = 0$
- 2. Linearize about \bar{x}
 - $\bullet \quad \frac{Df}{Dx}|_{\bar{x}} = \left[\frac{\partial f_i}{\partial x_j}\right]$

$$\dot{x} = f(x) \Rightarrow \dot{x} = Ax$$

$$\ddot{\theta} = -\frac{g}{L}\sin(\theta) - \delta\dot{\theta}, \qquad \frac{g}{L} = 1$$

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -\sin(x_1) - \delta x_2 \end{bmatrix}$$

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$$

Basic Steps to linearize a nonlinear system

- 1. Find some fixed points
 - \bar{x} s.t. $f(\bar{x}) = 0$
- 2. Linearize about \bar{x}
 - $\bullet \quad \frac{Df}{Dx}|_{\bar{x}} = \left[\frac{\partial f_i}{\partial x_j}\right]$

ummundzammunu.

$$A_{down} = \begin{bmatrix} 0 & 1 \\ -1 & -\delta \end{bmatrix}$$

$$\dot{x} = f(x) \Rightarrow \dot{x} = Ax$$

$$\ddot{\theta} = -\frac{g}{L}\sin(\theta) - \delta\dot{\theta}, \qquad \frac{g}{L} = 1$$

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -\sin(x_1) - \delta x_2 \end{bmatrix}$$

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0, \pi \\ 0 \end{bmatrix}$$

$$\frac{DF}{Dx} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix}$$

$$\frac{DF}{Dx} = \begin{bmatrix} 0 & 1 \\ -\cos(x_1) & -\delta \end{bmatrix}$$

Basic Steps to linearize a nonlinear system

- 1. Find some fixed points
 - \bar{x} s.t. $f(\bar{x}) = 0$
- 2. Linearize about \bar{x}
 - $\bullet \quad \frac{Df}{Dx}|_{\bar{x}} = \left[\frac{\partial f_i}{\partial x_i}\right]$

ummundigummundi.

$$A_{down} = \begin{bmatrix} 0 & 1 \\ -1 & -\delta \end{bmatrix}$$
 $\lambda_{down} = \pm i$ stable!
 $A_{up} = \begin{bmatrix} 0 & 1 \\ 1 & -\delta \end{bmatrix}$
 $\lambda_{up} = \pm 1$ unstable!

$$\dot{x} = f(x) \Rightarrow \dot{x} = Ax$$

$$\ddot{\theta} = -\frac{g}{L}\sin(\theta) - \delta\dot{\theta}, \qquad \frac{g}{L} = 1$$

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -\sin(x_1) - \delta x_2 \end{bmatrix}$$

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0, \pi \\ 0 \end{bmatrix}$$

$$\frac{DF}{Dx} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix}$$

$$DF = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$$

$$\frac{DF}{Dx} = \begin{bmatrix} 0 & 1 \\ -\cos(x_1) & -\delta \end{bmatrix}$$

Basic Steps to linearize a nonlinear system

- 1. Find some fixed points
 - \bar{x} s.t. $f(\bar{x}) = 0$
- 2. Linearize about \bar{x}
 - $\bullet \quad \frac{Df}{Dx}|_{\bar{x}} = \left[\frac{\partial f_i}{\partial x_i}\right]$

ummundageningeningeningen

$$A_{down} = \begin{bmatrix} 0 & 1 \\ -1 & -\delta \end{bmatrix}$$
 $\lambda_{down} = \pm i$ stable!
 $A_{up} = \begin{bmatrix} 0 & 1 \\ 1 & -\delta \end{bmatrix}$
 $\lambda_{up} = \pm 1$ unstable!

$$\dot{x} = f(x) \Rightarrow \dot{x} = Ax$$

$$\ddot{\theta} = -\frac{g}{L}\sin(\theta) - \delta\dot{\theta}, \qquad \frac{g}{L} = 1$$

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -\sin(x_1) - \delta x_2 \end{bmatrix}$$

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0, \pi \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} \frac{\partial f_1}{\partial t} & \frac{\partial f_1}{\partial t} \end{bmatrix}$$

$$\frac{DF}{Dx} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix}$$

$$\frac{DF}{Dx} = \begin{bmatrix} 0 & 1 \\ -\cos(x_1) & -\delta \end{bmatrix}$$

$$\underline{\dot{x}} = \underline{\underline{Ax}} + \underline{\underline{Bu}}$$

$$x \in \mathbb{R}^n$$

$$\mathsf{A} \in \mathbb{R}^{n \times m}$$

$$\underline{y} = \underline{Cx}$$

 $\mathsf{u}\epsilon\mathbb{R}^q$

$$\underline{\dot{x}} = \underline{\underline{Ax}} + \underline{\underline{Bu}}$$

 $x \in \mathbb{R}^n$

 $A \in \mathbb{R}^{n \times m}$

$$\underline{y} = \underline{\underline{Cx}}$$

u $\epsilon \mathbb{R}^q$

$$\dot{x} = Ax - BKx$$

 $\mathsf{B} \epsilon \mathbb{R}^{n imes q}$

A linear controller (K matrix) can be optimal for linear systems!

- What determines whether or not a system is controllable?
 - A system is controllable, if you can steer your state x anywhere you want in \mathbb{R}^n

$$\underline{\dot{x}} = \underline{\underline{Ax}} + \underline{\underline{Bu}}$$

$$x \in \mathbb{R}^n$$
 $\mathsf{A} \in \mathbb{R}^{n imes m}$

 $\mathsf{u}\epsilon\mathbb{R}^q$

$$\underline{y} = \underline{Cx}$$

$$\dot{x} = Ax - BKx$$

$$= (A - BK)x$$

$$= (A - BK)x$$

New dynamics

- What determines whether or not a system is controllable?
 - A system is controllable, if you can steer your state x anywhere you want in \mathbb{R}^n

$$\underline{\dot{x}} = \underline{Ax} + \underline{Bu}$$

$$x \in \mathbb{R}^n$$

 $A \in \mathbb{R}^{n \times m}$

$$y = \underline{Cx}$$

$$\mathsf{u}\epsilon\mathbb{R}^q$$

$$\dot{x} = Ax - BKx$$

$$\mathsf{B}\epsilon\mathbb{R}^{n imes q}$$

$$\dot{x} = (A - BK)x$$

New dynamics

- What determines whether or not a system is controllable?
 - A system is controllable, if you can steer your state x anywhere you want in \mathbb{R}^n
 - Matlab/python >> ctrb(A,B)

$$\underline{\dot{x}} = \underline{\underline{Ax}} + \underline{\underline{Bu}}$$

$$x \in \mathbb{R}^n$$

 $A \in \mathbb{R}^{n \times m}$

$$y = \underline{Cx}$$

u
$$\epsilon \mathbb{R}^q$$

$$\dot{x} = Ax - BKx$$

 $\dot{x} = (A - BK)x$

$$\mathsf{B}\epsilon\mathbb{R}^{n imes q}$$

Can you control this system?

$$1. \begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

- There's no way to directly/indirectly affect x_1
- What could you change to make it controllable?
 - Add more control authority!

$$2. \begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad controllable$$

$$\underline{\dot{x}} = \underline{\underline{Ax}} + \underline{\underline{Bu}}$$

$$x \in \mathbb{R}^n$$

uncontrollable
$$\dot{x} = (A - BK)x$$

$$A\epsilon\mathbb{R}^{n\times m}$$

$$u\epsilon\mathbb{R}^q$$

$$B \in \mathbb{R}^{n \times q}$$

Can you control this system?

$$1. \begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

- There's no way to directly/indirectly affect x_1
- What could you change to make it controllable?
 - Add more control authority!

$$2. \begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \quad controllable$$

Can you control this system?

3.
$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
 controllable

- Systems with coupled can be controllable...
- If A is tightly coupled, you can get away with a simple B

$$\underline{\dot{x}} = \underline{\underline{Ax}} + \underline{\underline{Bu}}$$

$$A\epsilon\mathbb{R}^{n imes m}$$

uncontrollable
$$\dot{x} = (A - BK)x$$

$$u\epsilon\mathbb{R}^q$$

 $x \in \mathbb{R}^n$

$$B \in \mathbb{R}^{n \times q}$$

Can you control this system?

1.
$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
 uncontrollable
2.
$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
 controllable
3.
$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
 controllable

- Matlab >> ctrb(A,B)
- Controllability matrix
 - $\mathbb{C} = [B \quad AB \quad A^2B \quad \dots \quad A^{n-1}B]$
 - Iff $\operatorname{rank}(\mathbb{C}) = n$ the system is controllable

$$\underline{\dot{x}} = \underline{\underline{Ax}} + \underline{\underline{Bu}}$$

$$x \in \mathbb{R}^n$$

uncontrollable
$$\dot{x} = (A - BK)x$$

$$A\epsilon\mathbb{R}^{n imes m}$$

$$u\epsilon\mathbb{R}^q$$

$$B\epsilon\mathbb{R}^{n\times q}$$

Can you control this system?

1.
$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
 uncontrollable
2.
$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
 controllable
3.
$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
 controllable

- Matlab >> ctrb(A,B)
- Controllability matrix
 - $\mathbb{C} = [B \quad AB \quad A^2B \quad \dots \quad A^{n-1}B]$
 - Iff $\operatorname{rank}(\mathbb{C}) = n$ the system is controllable
- System 1:

$$ullet$$
 $\mathbb{C}= \Big[$

•
$$\mathbb{C} = \begin{bmatrix} 0 & 0 \\ 1 & 2 \end{bmatrix}$$
 rank=1, n=2

$$\underline{\dot{x}} = \underline{\underline{Ax}} + \underline{\underline{Bu}}$$

$$x \in \mathbb{R}^n$$

uncontrollable
$$\dot{x} = (A - BK)x$$

$$A\epsilon\mathbb{R}^{n imes m}$$

$$u\epsilon\mathbb{R}^q$$

$$B\epsilon\mathbb{R}^{n\times q}$$

Can you control this system?

1.
$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
 uncontrollable
2.
$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$
 controllable
3.
$$\begin{bmatrix} \dot{x_1} \\ \dot{x_2} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
 controllable

- Matlab >> ctrb(A,B)
- Controllability matrix
 - $\mathbb{C} = [B \quad AB \quad A^2B \quad \dots \quad A^{n-1}B]$
 - Iff $\operatorname{rank}(\mathbb{C}) = n$ the system is controllable
- System 1: $\mathbb{C} = \begin{bmatrix} 0 & 0 \\ 1 & 2 \end{bmatrix}$

rank=1, n=2

• System 3:

•
$$\mathbb{C} = \begin{bmatrix} 0 & 1 \cdot 0 + 1 \cdot 1 \\ 1 & 0 \cdot 0 + 2 \cdot 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$$
 rank=2, n=2

$$\underline{\dot{x}} = \underline{\underline{Ax}} + \underline{\underline{Bu}}$$

 $x \in \mathbb{R}^n$

uncontrollable
$$\dot{x} = (A - BK)x$$

 $A\epsilon\mathbb{R}^{n\times m}$

 $u\epsilon\mathbb{R}^q$

 $B \in \mathbb{R}^{n \times q}$

Fyi!

- Just because a linearized, nonlinear system is uncontrollable, it can still be nonlinearly controllable!
- C can also tell you how controllable a system is!

- What determines whether or not a system is controllable?
 - A system is controllable, if you can steer your state x anywhere you want in \mathbb{R}^n
 - Matlab/python >> ctrb(A,B)

$$\underline{\dot{x}} = \underline{\underline{Ax}} + \underline{\underline{Bu}}$$

$$x \in \mathbb{R}^n$$
 $A \in \mathbb{R}^{n imes m}$

$$\underline{y} = \underline{Cx}$$

$$\dot{x} = Ax - BKx$$

$$\mathsf{B}\epsilon\mathbb{R}^{n imes q}$$

 $\mathsf{u}\epsilon\mathbb{R}^q$

$$\dot{x} = (A - BK)x$$

New dynamics

- Linear systems review
- Eigenvectors and eigenvalues
- Stability
- Discrete time systems
- Linearizing non-linear systems
- Controllability
- Inverted pendulum dynamics

$$\dot{x} = Ax + Bu$$

This should look familiar from..

- MATH 2940 Linear Algebra
- ECE3250 Signals and systems
- ECE5210 Theory of linear systems
- MAE3260 System Dynamics
- etc...