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Linear Systems

* Linear systems review

e Eigenvectors and eigenvalues
e Stability

* Discrete time systems

* Linearizing non-linear systems
e Controllability

e Inverted pendulum dynamics
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Based on “Control Bootcamp”, Steve Brunton, UW

x = Ax+Bu

This should look familiar from..

e MATH 2940 Linear Algebra

e ECE3250 Signals and systems

e ECE5210 Theory of linear systems
e MAE3260 System Dynamics

e etc..



https://www.youtube.com/watch?v=Pi7l8mMjYVE

Linear Systems — “review of review”

e Linear system:
e Solution:
* Eigenvectors:

* Eigenvalues:

 Linear transform:

e Solution:
 Mapping from z to x:
e Stability in continuous time:

e Discrete time:

~/ ECE4960 Fast Robots

e Stability in discrete time:

x = Ax
x(t) = e4tx(0)
T = :51 Sz o fn]
1 0"
p=| %
0 Ap
AT =TD

oAt — ToDtT—1
x(t) = TeP'T~1x(0)

A =a+ib, stable iff a<0
x(k +1) = Ax(k), A = 44t
A" = R"e™9 stable iff R<1
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Linearizing Non-Linear Systems

Basic Steps to linearize a nonlinear system X = f(x) = x = Ax

1. Find some fixed points

- Example
e Xs.t.f(®)=0 e : ) —
e (basically points where the system X1 = fl X1,X2) = X1X3

doesn’t move . _ 2 2
R _) Xy = fo(xq1,%3) = x1° + Xy
2. Linearize about x

D_fl__ Afi
Dx

0 d

bf f1/ax1 f1/ax2
d 0

Dx f2/ax1 f2/62

Df_ X9 X1
Dx  12x4 2x2]




Linearizing Non-Linear Systems

Basic Steps to linearize a nonlinear system X = f(x) = x = Ax

1. Find some fixed points

- Example
e Zst f(@)=0 xamp

e (basically points where the system Xy = f1(x1,%2) = %1%,
doesn’t move)

. _ 2 2
R - Xy = fo(xq1,%3) = x1° + Xy
2. Linearize about x

. Dbf, _|9fi
e = [ | |
e |f you zoom in on X, your system will df1 df;
look linear! Q D_f B /ax1 /axz
Dx |9f; df,
_ /ax1 /62 _

Xz[g] Df 1% X1]

—*— Dx L2x; 2x,
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Linearizing Non-Linear Systems

Basic Steps to linearize a nonlinear system
1. Find some fixed points
e X s.t.f(k)=0
e (basically points where the system
doesn’t move)
2. Linearize about X

o D_f|_= %
Dx ' 6xj

e [fyouzoom in on X, your system will

look linear! :
x = f(x)

= F @+ L -0+ 2Lt L
x—fx Dx|,gx X D2x|x-x—x +D3x|x-x—x + -
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Linearizing Non-Linear Systems

Basic Steps to linearize a nonlinear system
1. Find some fixed points
e X s.t.f(k)=0
e (basically points where the system
doesn’t move)
2. Linearize about X

o D_f|_= %
Dx ' (’)xj

e [fyouzoom in on X, your system will

look linear! :
x = f(x)
e Good control will keep you D?f D3f
close to the fixed point, X = fD(;) + Dx |lz(x — %) + oy |- — %)% + PEn (=7 + -

Ax = Dx | cAx = Ax = AAx
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Linearizing Non-Linear Systems

Basic Steps to linearize a nonlinear system
1. Find some fixed points
e X s.t.f(k)=0
2. Linearize about x
C oLy - [
Dx 'X

ox j Center Line !I ; Thrust Line

gimbal angle —! a..__

center of '
gravity ( ) torque cq

(ca)

gimbal angle =

AN
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Linearizing Non-Linear Systems

Basic Steps to linearize a nonlinear system
1. Find some fixed points

e X s.t.f(k)=0
2. Linearize about x

o D_f|_= %
Dx '* axj

k\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ﬁ

x=f(x)> x=Ax

Eq. of motion
e T=-—-mgLsin(0)
e« 7=16
e [0 = —mgLsin(6)
* Point mass inertia
o | =ml?
e mL?0 = —mgLsin(6)
¢ 0= —%sin(@) —50
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Linearizing Non-Linear Systems ] :
x=f(x)> x=Ax

Basic Steps to linearize a nonlinear system

1. Find some fixed points .3 g . :
¢+ X st f(®)=0 0 = —7sin(8) — 86
2. Linearize about x
. o[ d 1x1) _ *2
px 1% = 9% dt [x2] B [— sin(x;) — 6x2]

k\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ﬁ

b=l




Linearizing Non-Linear Systems

Basic Steps to linearize a nonlinear system

1. Find some fixed points
e X s.t.f(k)=0
2. Linearize about x
Df afi
-

k\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ﬁ

Agown = [_01

X = Ax

x=f(x)=>

6 = —%sin(@) — 56

d
dt [2] - [— sin(xxlz) — 6x2]

il =5

0 0
DF f1/ax1 f1/ax2
Dx |Of: of.
2/0x1 z/axz

DF 7 0 1
Dx —cos(xq) —5]
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Controllability

x = Ax +Bu
Yy =°Lx
system
u 5 y = x}
() x = Ax + Bu
—Kx [€ . .
“optimal” for linear systems

xeR™
AERnxm

ueR4

BeR™*4
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Controllability

system

x = Ax + Bu

—Kx

<€

X =Ax + Bu yeRM
nxm
y = Cx AeR
._ ueR4
x = Ax — BKx
BeR™*4
x = (A —BK)x

“optimal” for linear systems
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Controllability

e What determines whether or not a system is
controllable?
e A system is controllable, if you can steer
your state x anywhere you want in R"

system
u R y =x
1 x = Ax 4+ Bu
—Kx [€

X =Ax + Bu yeRM
nxm
y = Cx AeR
._ ueR4
x = Ax — BKx
BeR™*4
x = (A —BK)x

“optimal” for linear systems
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Controllability x = Ax + Bu ™
e What determines whether or not a system is — —
controllable? y = Cx AeR™*M
e Asystem is controllable, if you can steer 7 —
your state x anywhere you want in R" . UE]Rq
x = Ax — BKx
BeR"*4

x =(A—BK)x
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Controllability

z — A& + Bu xeR™
e What determines whether or not a system is — —

controllable? — Cx AeR™*™M
* A system is controllable, if you can steer X —

your state x anywhere you want in R" . UE]Rq
e Matlab/python >> ctrb(A,B) x = Ax — BKx

BeR"™*4
system y = x X = (A —BK)X
u u—
T | %=Ax+Bu >
—Kx |[€ . .
“optimal” for linear systems
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Controllability

e (Can you control this system?

Lol =l Sl [l

* There’s no way to directly/indirectly affect x;
 What could you change to make it controllable?
e Add more control authority!

N B | N R P

xeR™
AERnxm

uelR4

BeR™*4

pA



Controllability .
x =Ax + Bu n
ad == xeR

e Can you control this system? nxm
X1 1 0711%X11, [0 ¢ = — A€eR
L[] = 15 S0+ [ t= (A= Bx

* There’s no way to directly/indirectly affect x; ueR?
 What could you change to make it controllable? BeR™%4
e Add more control authority!

1L PR 53 S P |
e Can you control this system?
R P S HE

e Systems with coupled can be controllable...
e If Aistightly coupled, you can get away with a
simple B
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Controllability

e (Can you control this system?

.X:l- _ 1
1. x| = Lo
_x:1_ ~ 1
2. x|~ lo
_X:l_ ~ 1
3. %] = Lo

011

2]

i

i X2 ]

e Matlab >> ctrb(A,B)

e Controllability matrix
« C=[B AB A%B
e Iff rank(C) = n the system is controllable

_I_

_I_

_|_

HE

o 1l

hE

A"1B]

xeR™
AERnxm

uelR4

BeR™*4
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Controllability .
x =Ax + Bu n
ad == xeR

e (Can you control this system?

s ] S e - ; nxm
T I+ t= (- AP
[ = 2 Ot O ueR?

xX21 L0 210%1 10 111U BeR™%4
s o= Y]+ [0 )

%] ~lo 2llel ™l

e Matlab >> ctrb(A,B)
e Controllability matrix

» C=[B AB A*B .. A" 1B]
e Iff rank(C) = n the system is controllable
e System 1:
e C =
10 0
=1 2]
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Controllability .
x = Ax + Bu n
ad == xeR

e (Can you control this system?

L[] O+ O] % = (A—BK)x AR

| X7 ] 0 21 LX) 11 q
[l 0P, [t o] [u1] uek
] L0 21Lx2d T Lo 111U BeR™M%4
s [ 1]+ [0 €

x,] Tlo 20l Tl

. Matlab >> ctrb(A,B)
e Controllability matrix
« C=[B AB A?B .. A™'B]
e Iff rank(C) = n the system is controllable
~_ [0 U
System 1: C = [1 5
e System 3:
. C= 0 1-O+1-1] =[O |
1 0-04+2-1 1 2
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Controllability

e What determines whether or not a system is
controllable?

e A system is controllable, if you can steer
your state x anywhere you want in R"

Matlab/python >> ctrb(A,B)

system
u >
1 x = Ax + Bu
—Kx [€

“optima

I”

X =Ax + Bu yeRM
nxm
y = Cx AeR
._ ueR4
x = Ax — BKx
BeR™*4
x = (A —BK)x

for linear systems
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Linear Systems

* Linear systems review

e Eigenvectors and eigenvalues
e Stability

* Discrete time systems

e Linearizing non-linear systems
e Controllability

e Inverted pendulum dynamics

~/ ECE4960 Fast Robots

Based on “Control Bootcamp”, Steve Brunton, UW

x = Ax+Bu

This should look familiar from..

e MATH 2940 Linear Algebra

e ECE3250 Signals and systems

e ECE5210 Theory of linear systems
e MAE3260 System Dynamics

e etc..
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https://www.youtube.com/watch?v=Pi7l8mMjYVE
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