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Questions on Lab 9/10?

Lab 10: Path Planning and Execution Lab

Obiecti 1. Use the code from , to generate a start and a goal location. Please make sure to try
jective some examples, that requires the robot to circumnavigate one or more obstacles.
« Run setup. sh to install the necessary dependencies and refer to the Jupyter

The objective of this lab is to have your robot move from an unknown location to a goal location .
notebook on how to use the code in planner_qguery.py.

in your map as quickly as possible. You may do so using any means necessary - of course we
recommend sticking to the tools you have already developed in previous labs and heard of in
the lectures. This may involve any combination or subset of the following:

2. Place your robot at the start position, and let the robot finds its way as quickly as possible
to the goal location. Have the robot indicate when it has successfully entered the particular
grid occupancy cell. Discuss your results in terms of speed, runtime, and accuracy. Feel
free to also discuss what you would do to improve your system if you had more time.

Open loop control

Obstacle avoidance

PID control

Proximity, TOF, accelerometer, gyroscope, magnetometer readings
Local path planning (e.g. Bug 0-2 algorithms)

Local localization (given odometry)

Localization using the prediction and/or the update step

Graph search algorithms
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Based on “Control Bootcamp”, Steve Brunton, UW
Review

* Linear systems review

e Eigenvectors and eigenvalues
e Stability

* Discrete time systems

e Linearizing non-linear systems

* Controllability | x = Ax+Bu
e Inverted pendulum dynamics

This should look familiar from..

e MATH 2940 Linear Algebra

e ECE3250 Signals and systems

e ECE5210 Theory of linear systems
e MAE3260 System Dynamics

e etc..
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https://www.youtube.com/watch?v=Pi7l8mMjYVE

Review

x = f(x)
Df
|z

x = Ax + Bu

A"1B]

Linear system: x = Ax  Non-linear systems:
Solution: x(t) = e4tx(0) e Linearization: by
Eigenvectors: =& & énl
- 5 * Control:
A 0 .
1 e Controllability:
Eigenvalues: D= 2 « C=[B AB A*B ..
. rank(ctrb(A,B)) =n
0 An

Linear transform: AT =TD

Solution: et = TebtT-1

Mapping from z to x:
Stability in continuous time:

e Discrete time:
e Stability in discrete time:
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x(t) = TeP'T~1x(0)
A =a+ib, stable iff a<0

x(k +1) = Ax(k), A = 44t
A" = R"e™9 stable iff R<1



Review

system
T 7| %=Ax+Bu > x =(A—BK)x

—Kx [€




Review

Linear system: x = Ax
Solution: x(t) = e4tx(0)
Eigenvectors: = [& & $nl
(A4 0 |
. _ Az
Eigenvalues: D =
0 An

Linear transform: AT =TD

Solution: edl = TePtT—1
x(t) = TeP'T~1x(0)
A =a+ib, stable iff a<0

x(k +1) = Ax(k), A = 44t
A" = R"e™9 stable iff R<1

Mapping from z to x:
Stability in continuous time:

e Discrete time:
e Stability in discrete time:
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Non-linear systems: x = f(x)
Linearization: bJ | 7
Dx
Control: x = Ax + Bu
Controllability:
» C=[B AB A?B .. A" 'B]

. rank(ctrb(A,B)) =n



Controllability Matrix and the Discrete Time Impulse Response

x = Ax + Bu, x € R
C=[B AB A?B .. A" 1B]

e Why does C predict controllability?!
e Discrete time impulse response: x(k + 1) = Ax(k) + Bu(k)
eu(0)=1 x(0)=0
cu(l)=0 x(1)=8B
e u(2)=0 x(2)=A4B
e u3)=0 x(3)=A4%B

am * U(m) =0  x(m)=A""1B

< o hor"“ ECE4960 Fast Robots



Prof. Kirstin Hagelskjzer Petersen

ECE 4960 kirstin@cornell.edu

Reachability
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Controllabillity and Reachability

x = Ax + Bu, x € R
C=[B AB A?B .. A" 1B]

1. The system is controllable
o iffrank(C) =n

R, states that are reachable at time t
e R; = {£eR" for which there is an input
u(t) that makes x(t) = &

2. You can choose K to arbitrarily place the eigenvalues of your closed loop system

e x=(A—-BK)x

3. You can reach anywhere in R™ in a finite amount of time

i Rt:Rn
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Controllabillity and Reachability

x = Ax + Bu, x € R
C=[B AB A?B .. A" 1B]

1. The system is controllable
o iffrank(C) =n

R, states that are reachable at time t
e R; = {£eR" for which there is an input
u(t) that makes x(t) = &

v

2. You can choose K to arbitrarily place the eigenvalues of your closed loop system

e x=(A—-BK)x

3. You can reach anywhere in R™ in a finite amount of time

i Rt:Rn
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Controllability Gramians
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Controllabillity Gramian
t

e x(t) = e4tx(0) +f eA=0) By (1)dt

0

e Controllability Gramian
t At T ATt
* W, = |, e*"BB"e” Tdr
* Wi$=AS
e W, =~ CC’
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W, eR™™

x =Ax + Bu, x e R"

C=[B AB A%B .. A" 1B]

>> rank(ctrb(A,b))
>> [U,S,V] = svd(C, “econ’)
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Controllabillity Gramian
t

e x(t) = e4tx(0) +f eA=0) By (1)dt

0

e Controllability Gramian
t At T ATt
* W, = |, e/"BB"e” Tdr
* Wi$=AS
e W, =~ CC’
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W, eR™™

x =Ax + Bu, x e R"

C=[B AB A%B .. A" 1B]

>> rank(ctrb(A,b))
>> [U,S,V] = svd(C, “econ’)

A2$>

A3¢3 S

St
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Controllabillity Gramian

Ax + Bu, x € R"

-
1

C=[B AB A%B .. A" 1B]

>> rank(ctrb(A,b))
>> [U,S,V] = svd(C, “econ”)

 Controllability for very high
dimensional systems?

e Many directions in R™ are
extremely stable - you only need
to control directions that impact
your control objective

o Stabilizability
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Controllabillity Gramian

t

e x(t) = e4tx(0) +f eA=0) By (1)dt
0

e Controllability Gramian
o W, = [ e4"BBTeA Tdr W eR™"
* Wi$ =4S
e W, =~ CC’

o Stabilizability

are in the controllable subspace
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x =Ax + Bu, x e R"

C=[B AB A%B .. A" 1B]
>> rank(ctrb(A,b))

>> [U,S,V]

A3¢3

4
e A system is stabilizable iff all unstable eigenvectors of A

svd(C, “econ?)

A2$>

St
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PBH Test
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PBH test .
x =Ax + Bu, x e R"

e Popov-Belevitch-Hautus (PBH) test C=[B AB A2B .. A" 1p]

e (A,B) is ctrb iff >> rank(ctrb(A,b))

e rank[(A—AI) Bl=nV AeC
 The (A,B) pair is controllable if and only if the rank of the concatenated
matrix is n for all of the eigenvalues belonging to the complex plane!

1. rank|(A — Al)] = n, except for at eigenvalues A

2. B needs to have some component in each eigenvector direction

3. If Bis a random vector (B=randn(n,1)), then (A,B) will be controllable with
__high probability.
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Inverted Pendulum on a Cart
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Inverted Pendulum on a Cart

N

Force acting on the

Eq. of motion
cart in the x direction

} —
State space d
model —> Fixed points, x —> Jacobian = —> (A,B) Controllable?
X J/
X 9 =0, ﬂ P Add linear control
X=lpg 6=0 dx x = (A — BK)x
6. x =0 | u X
x=Ax+Bu [ system g

x free variable

K 19
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