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• Safer: weigh less than 1 pound and thus are safe to 
operate near humans

• Smaller and covert: can access narrow or unfriendly 
spaces inaccessible to other vehicles

• Autonomous flight expands the capability of a single 
operator to monitor previously inaccessible spaces
– More effective search and rescue
– Surveillance in complex environments
– Security in densely populated, sensitive regions 

Motivation: Insect-Scale Autonomous Flight

Crazyflie 2.0 (https://www.bitcraze.io/crazyflie-2/)

27g 9cm

RoboBee [Ma, 2013]



• Size, weight and power constraints

• RoboBee power budget: ~21mW

• Only ~2mW available for sensing 
and control

• Fast dynamics

• Dominant timescales on the order 
of a few hundred milliseconds

• Physical parameter variations

• Small wing asymmetries result 
in undesired torque during flight

• Highly susceptible to external disturbances such as wind gusts

Challenges: Insect-scale Sensorimotor Control
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Open Loop Flight

Funded by the ONR Grant # N00014-17-1-2614



• Neuromorphic sensing and control algorithms for intelligent, energy-efficient 
autonomy

Neuromorphic Sensing and Control

4
inivation (https://inivation.com/)

Neuromorphic cameras have 1 s temporal 
resolution and require at most a few 
milliwatts of power

Spiking neural networks (SNNs), or 
neuromorphic chips, can learn online to 
improve performance or adapt to new 
conditions

Emerging Technologies
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1. Model the RoboBee flight dynamics, validate with experimental data

2. Develop adaptive flight controllers which account for physical variations

3. Develop sensing algorithms to perform target tracking and obstacle avoidance

Research Goals

5

Modeling
Exteroceptive Sensing

Adaptive Flight Control
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RoboBee Modeling

6T.S. Clawson, S. Ferrari, E.F. Helbling, R.J. Wood, B. Fu, A. Ruina, and Z.J. Wang, “Full Flight Envelope and 
Trim Map of Flapping-Wing Micro Aerial Vehicles, ” AIAA JGCD, Vol. 43, No. 12 (2020), pp. 2218-2236.



• Aerodynamic forces in flapping flight differ from classic airfoil models

• Modeling aerodynamic effects on flapping wings
– Computationally expensive CFD models [Liu, ’98], [Sun, ’02]
– Simplified models can accurately predict stroke-averaged forces 

[Whitney, ’10], [Dickinson, ’99], [Wang, ’04]

• Modeling flight dynamics of the insect or robot body
– Simple 2D models [Ristroph ’13]
– Stroke-averaged models [Chirarattananon, ’16]
– Kinematically-constrained wing trajectories

• Limited wing pitch [Oppenheimer, ’10]
• Kinematic models from experimental data [Wang, ’16], [Dickson, ’08]

• Finding hovering set point and analyzing modes of motion and stability 
[Wu, ’12]

Modeling Flapping Wing Flight
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Assumptions:
• Rigid wings with passive pitching 

dynamics

• No stroke-plane deviation

• Control inputs u affect 
stroke angle

• Stroke angle modeled by second 
order system

Wing Modeling
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• Moment from spring:

Passive Wing Pitch Dynamics
.
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[T. S. Clawson, S. B. Fuller, R. J. Wood, S. Ferrari “A Blade Element Approach to Modeling Aerodynamic Flight of an Insect-scale Robot,” 
American Control Conference (ACC), Seattle, WA, May 2017.]



• Aerodynamic forces on wing caused by translational motion
• Locally, lift and drag are proportional

to the square of the incident velocity vC

• Where

• Rotational damping Mrd caused by
span-wise rotation of wing

Aerodynamic Forces and Moments
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[T. S. Clawson, S. B. Fuller, R. J. Wood, S. Ferrari “A Blade Element 
Approach to Modeling Aerodynamic Flight of an Insect-scale Robot,” 
American Control Conference (ACC), Seattle, WA, May 2017.]



Model Validation: Challenges
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Model Validation

12

Initial Condition
Trajectory• Validate model with open 

loop flight tests
• Dominant longitudinal and 

lateral modes visible in 
experimental data

• Model predicts the same 
dominant modes

v x

Longitudinal Phase Space



Longitudinal Instability
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Period T and time constant for longitudinal mode:

Simulated Trajectories

0.38s 45 wing beatsT

0.24s

Experimental Trajectories

Trajectories in state space tend to lie on plane 
defined by dominant mode

Longitudinal Phase Space Longitudinal Phase Space

Plane of Dominant Longitudinal Mode



• Solution                         of linear system is a summation of the modes xi(t)

• Imaginary component is zero – each mode must have a purely real solution

• The solution for a single mode shape xi(t)
is spanned by ui and wi

– ui and wi define a plane in 3D phase space

Mode Subspaces
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Longitudinal Instability
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• Trajectories in state space tend to lie on plane of 
dominant longitudinal mode

• Longitudinal instability from dynamic model 
matches experimental data closely
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Experimental Trajectories Simulated Trajectories

Lateral Instability Comparison
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• Model can reproduce lateral instability observed 
in open loop flight experiments

• Period T and time constant of mode:

0.83s 100 wing beatsT

0.88s

Lateral Phase Space Lateral Phase Space

Plane of Dominant Lateral Mode



Lateral Instability
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Dominant Unstable Modes in Hovering
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Steady Maneuvers and Flight Envelope
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• Steady maneuvers are trajectories with minimum period equal to the flapping 
period T and constant control inputs

• Command input y* defines maneuvers in terms of commanded speed u*, climb 
angle *, turn rate    , and sideslip angle *

• The most general steady maneuver is
the coordinated turn

• Other steady maneuvers include:

Steady Maneuvers

20
Longitudinal Flight Lateral Flight

* * * * *uy

*



• Wing state xw(t) is constant:

• Yaw advances by commanded turn angle:

• Position is on helical path given 
by y*

• Body angular rate and velocity v rotate by the 
commanded turn angle:

Coordinated Turn Constraints
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• Body orientation (t) is constant:

• Position is on the straight path 
defined by y*:

• Body angular rate and velocity v are periodic:

Longitudinal Flight Constraints
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Longitudinal flight is a special case of a coordinated turn where: 



• To find set points corresponding to steady maneuvers, solve equations of 
motion subject to maneuver constraints cm = 0

• Discretize ODE and write dynamics as constraints using Hermite-Simpson rule

• Dynamics constraints can be written in terms of constant matrices A, B:

• Use nonlinear program to 
numerically solve:

Solving for Maneuver Set Points
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Stability of Modes in the Model

24

• 4 Oscillatory modes for each set point

• 2 Highly damped, coupled attitude oscillations

• 1 dominant longitudinal and 1 dominant lateral mode

Hovering Modes Forward Flight Modes



Unstable longitudinal mode in 
hovering

Hovering – Longitudinal Mode
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Time constant and frequency 
f of longitudinal mode:
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Hovering – Lateral Mode
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Longitudinal mode becomes 
stable in forward flight

Mode has a very large time 
constant 

Steady Forward – Longitudinal Mode
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Steady Forward – Lateral Mode
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Peak-to-peak stroke amplitude and mean stroke angle 
as a function of speed and climb angle

Longitudinal Flight 
Envelope
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Peak-to-peak stroke amplitude

Mean stroke angle

Flight Envelope



Peak-to-peak stroke amplitude and right-left stroke 
amplitude difference as a function of speed and climb 
angle

Lateral Flight 
Envelope
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Peak-to-peak stroke amplitude

Stroke amplitude difference

Flight Envelope



Flight Control
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• Fixed-gain controllers require hand calibration for each robot [Ma, ’13], 
[Dickson, ’08]

• Adaptive controller for wind gust disturbance rejection only stabilizes about 
hovering [Chirarattananon, P. ’17]

• Hovering control of simplified 2D model with SNN [Clawson, T.S. ’16]

• Develop a full envelope flight controller, which can adapt online to physical 
parameter variations

• Spiking neural networks (SNNs) can adapt online
and can be implemented in power-efficient
neuromorphic chips

Flapping Wing Flight Control
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Goal:

e



Single-layer SNN Controller
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( ) ( ) ( ( ) )t t F ty Ws W Mx b
• SNN function approximation by connection 

weights M, W, and b

• Output connection weights W determined
offline by supervised learning

• Training data set      generated by a stabilizing 
target control law (e.g. optimal PIF controller)
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• Neurons generate spike trains (t) based on 
input current I(t)

• Synapses filter the spikes and generate post-
synaptic current s(t)

• Synapses modeled as first-order low-pass 
filters h(t)

SNN Control Model
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• PIF control law is used as the target function for training an SNN offline

• Optimal linear controller guaranteed 
to stabilize linear system

• Control law proportional to error in
state x, control u, and integral of output 

• The control law minimizes the quadratic cost J

PIF Compensator
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• First step towards full flight envelope control
• Control signal u(t) provided entirely by spiking 

neural networks

Adaptive SNN Controller (Hovering Only)
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• Non-adaptive term u0(t) trained offline by 
supervised learning to approximate PIF control law

• Adaptive term uadapt(t) adapts online to minimize 
output error

xref Reference state

u0
Non-adaptive control 
input

uadapt Adaptive control input

x State error

ua Amplitude input

up Pitch input

ur Roll input0( ) ( ) ( )adaptt t tu u u

[T. S. Clawson, T. C. Stewart, C. Eliasmith, S. Ferrari “An Adaptive Spiking Neural Controller for Flapping Insect-scale Robots,”
IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, December 2017]



Adaptive SNN Controller (Hovering Only)
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• Adaptive term uadapt comprised 
of inputs for flapping amplitude 
ua, pitch up, roll ur

• Output weights adapt online to 
minimize output error

• Every element of uadapt computed from a single network of 100 neurons, e.g.

• The connection weights are updated 
online to minimize output error
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[T. S. Clawson, T. C. Stewart, C. Eliasmith, S. Ferrari “An Adaptive Spiking Neural Controller for Flapping Insect-scale Robots,”
IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, December 2017]



• SNN initialized with PIF
• SNN controller quickly adapts to 

asymmetries in the wings to stabilize 
hovering flight

• PIF compensator maintains stability, but 
drifts significantly from the origin

Adaptive SNN Controller (Hovering Only)
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Comparison:

[T. S. Clawson, T. C. Stewart, C. Eliasmith, S. Ferrari “An Adaptive Spiking Neural Controller for Flapping Insect-scale Robots,”
IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, December 2017]



• SNN trained to approximate steady-state gain of gain-scheduled PIF
• PIF Gain matrices dependent on scheduling variables a

• Steady-state gain computed using transfer
function and final value theorem

• Network output weights computed to 
approximate steady-state gain matrix Kss

• SNN Control input is a linear 
transformation of post-synaptic current

SNN Controller – Full Flight Envelope
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SNN Control – Climbing Turn
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SNN Control – Complete Turn
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Hardware/control Developments
to Enable Aggressive Yaw Maneuvers
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Motivation: 
• The RoboBee nominally achieves yaw control via modulation of the ratio 

of upstroke to downstroke speed for each wing (“split-cycling”)

Novel yaw generation for flapping-wing MAVs

(a) depiction of 
“split-cycle” motion. 
(b) drive signals that 
achieve split cycle 
motion through the 
addition of higher 
harmonics onto the 
fundamental drive 
frequency.



Motivation: 
• RoboBee nominally achieves yaw control via modulation of ratio of 

upstroke to downstroke speed for each wing (“split-cycling”)
• Split-cycling is filtered out by the transmission during high-frequency 

flapping

Novel yaw generation for flapping-wing MAVs



• Next objective: Demonstrate yaw control in-flight
– Confirm that (as according to model and basic kinematic 

tests) flightworthy lift should be maintained during yaw
– Implement in-flight yaw control

• Improved basic hovering
• Yaw maneuvers in flight

• Exploring non-resonant flapping regimes 
opens new family of control parameters 
conducive to event-based architectures

• Paper accepted to ICRA 2019:
• R. Steinmeyer, E.F. Helbling, and R.J. Wood, “Yaw Torque 

Authority for a Flapping-Wing Micro-Aerial Vehicle,” to appear: 
IEEE Int. Conf. on Robotics and Automation, Montreal, Canada, 
May, 2019. 

Novel yaw generation for flapping-wing MAVs



Exteroceptive Sensing
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• Onboard exteroceptive sensors required for full 
flight autonomy

• Fast dominant time scales of insect-scale flight 
require high sensing rate and low latency
– Traditional sensors consume large amounts of 

power for high sensing rate (e.g. ~100 watts 
for high speed camera)

– High data rate requires additional data 
processing

• Neuromorphic vision sensors have 1 s temporal 
resolution and require at most a few milliwatts of 
power [Lichtsteiner, ’08], [Brandli, ’14]

Exteroceptive Sensing Motivation

47
Image Credit: inivation (https://inivation.com)



• Neuromorphic cameras generate 
asynchronous events instead of frames

• An event at (x, y) is generated at time
ti, with polarity

• “On” events when 

• “Off” events when 

• The ith event ei is described by the 
tuple

• The set of all events is

Neuromorphic Vision Sensors
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• Scattered events are generated by motion of the point

• Determine optical flow by estimating the motion of 
points in the scene using the scattered events

The Optical Flow Problem
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• Coordinates of some point                        in the 
image plane determined by optical flow

• Assume:

• Determine horizontal and vertical flow (vx, vy) from
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Neuromorphic Optical Flow

• Assume gradient n of event rate is normal to 
the motion of points in the scene

• Speed of the motion is inversely proportional 
to magnitude of gradient

• Optical flow is written directly in terms of the 
event rate gradient 2 2

1x

y b
v ac

bav
w

w w

• Existing neuromorphic optical flow methods rely 
on optimization [Benosman, ’14], [Rueckauer, ’16]

• Estimate continuous motion from discrete events

• Introduce continuous event rate f through 
convolution of events with continuous kernel K
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Neuromorphic Optical Flow Results
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Mean processing time 
per event: 0.7 s



Neuromorphic Motion Detection
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Detect motion relative to the environment 
using a rotating neuromorphic camera

Camera View

World View

Assumptions
• Known camera motion
• Camera motion dominated by rotation
• Total derivative of pixel intensity is zero

Neuromorphic Camera



• Pixel intensity can be recovered by integrating the event rate

• By previous assumptions, future pixel intensity can be predicted if image-plane 
motion field (vx, vy) is known

• Motion field due to camera rotation is

• Pixel intensity after a short time t is predicted 
from motion field:

predicted 

Neuromorphic Motion Detection
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1. Compute difference between 
predicted and measured intensity

2. Denoise by convolving with a 
multivariate Gaussian kernel K
with covariance 

3. Detect motion by comparing 
smoothed intensity difference 
with a threshold 

Neuromorphic Motion Detection Results
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0, otherwise.
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Sensor Hardware Integration
for Event-driven Control Experiments
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• Past work on RoboBee sensors has 
focused on individual sensor 
integration and characterization

Background: prior sensor integration on RoboBees
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[3]

EF Helbling, et al., IMAV 2014
EF Helbling, et al., ICRA 2014

EF Helbling, et al., ISRR 2015 PE Duhamel, EF Helbling, et al., in preparation
S Mange, EF Helbling, ICRA 2017



• Current work  
emphasizing two 
classes of 
sensors:

Current sensor integration on RoboBees

Mass 37 mg 21 mg
Size 4x4x1 mm 5x3x1 mm
Power <3mW 4 mW

Maximum Range 2000 deg/s 14 cm

Maximum Data Rate 1kHz 50 Hz

Communication I2C (4-wire) I2C (4-wire)

Attitude ( ) Altitude (z)

EF Helbling, et al., IMAV 2014
EF Helbling, et al., ISRR 2015



• Current work is combining these two into a single 
package as we gear up for integration and flight 
control experiments with Cornell

Current sensor integration on RoboBees

• Combination of IMU and proximity 
sensor

• Stabilize attitude with gyroscope
• Incorporate onboard accelerometer

measurements to compensate for 
integration drift

• Current specifications:
• Mass: 53mg
• Power: 8mW
• Dimension: 5x3x2 mm 



Summary
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Modeling1

Adaptive Flight Control2

Exteroceptive Sensing
3

• Flight model captures dominant modes
• Set points for steady maneuvers were computed
• Model predicts that forward flight becomes 

stable with increasing speed

• Adaptive SNN Controller can adapt to 
unmodeled parameter variations

• SNN can provide control for full flight envelope
• Hardware developments: RoboBee aggressive 

yaw authority

• Optical flow can be efficiently computed from 
neuromorphic cameras

• Target motion can be detected from a rotating 
neuromorphic camera

• Hardware developments: integrated 
exteroceptive GNC RoboBee sensing


