ECE 4960

Prof. Kirstin Hagelskjær Petersen kirstin@cornell.edu

Fast Robots

IMU

- Inertial Measurement Unit ullet
 - Data related to orientation, velocity, and gravity

IMU

- Inertial Measurement Unit
- Accelerometer
 - Linear acceleration, $a = \dot{v} [m/s^2]$
- Gyroscope
 - Angular velocity, $\dot{\omega} = \frac{\Delta\theta}{\Delta t}$ [deg/sec]
- Magnetometer
 - Magnetic field strength, [uT] or [Gauss], (1 Gauss = 100uT)

 \rightarrow Get absolute orientation

(position)

 \rightarrow Track orientation

 \rightarrow Track orientation

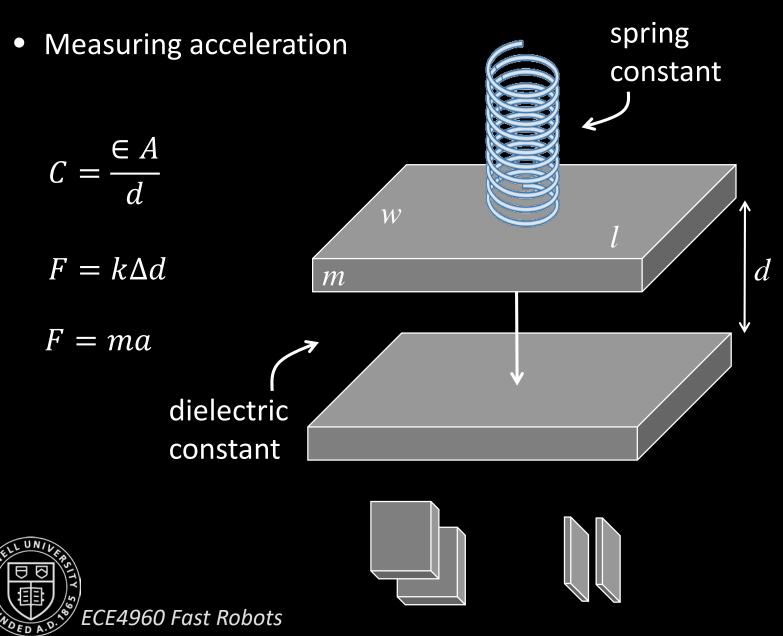
• NB: Gravity, magnetic fields, accelerations affect these sensors in many ways!

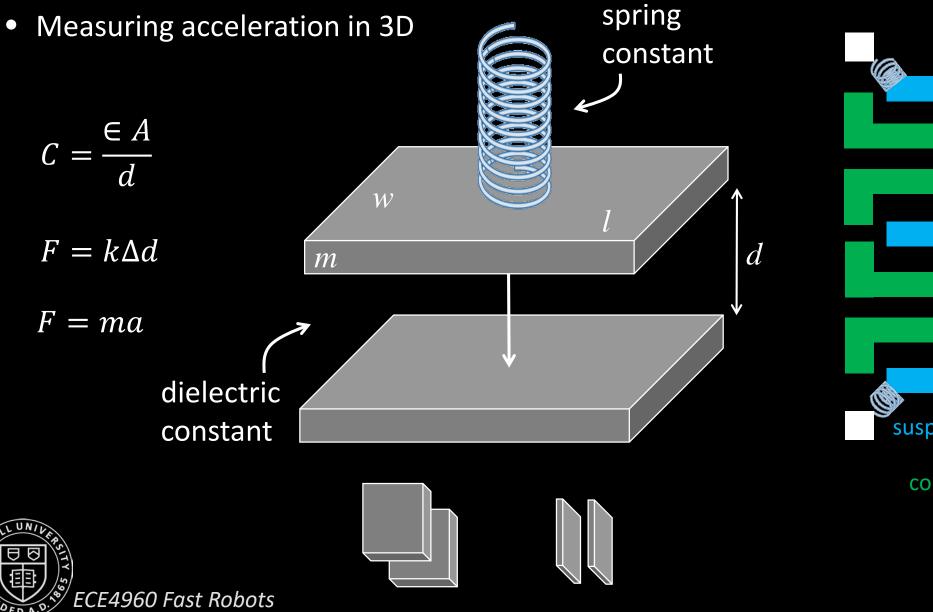
Dead reckoning

IMU - Demo

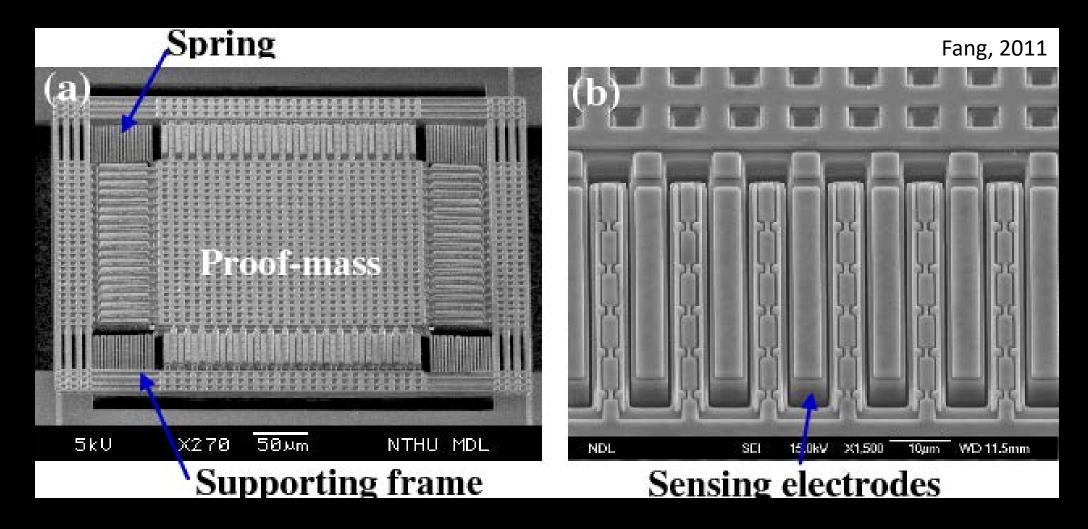
• ..\SparkFun_ICM-20948_ArduinoLibrary-master\examples\Arduino\Example1_Basics

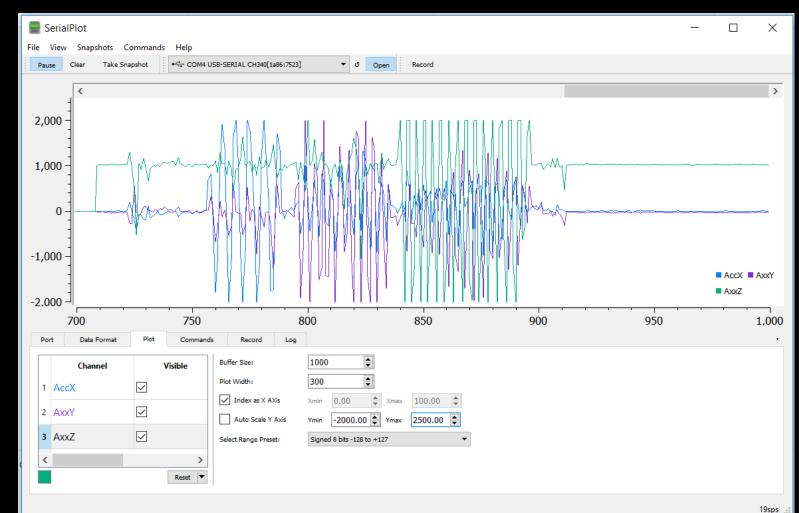
Scaled. Acc (mg) [-00093.75, 00001.46, 01019.53], Gyr (DPS) [-00000.96, 00001.80, -00002.67], Mag (uT) [00001.05, -00049.95, 00049.50], Tmp (C) [00024.35] Scaled. Acc (mg) [-00090.82, 00010.74, 01012.21], Gyr (DPS) [00001.40, 00000.82, 00001.05], Mag (uT) [00002.10, -00050.10, 00049.05], Tmp (C) [00024.16] Scaled. Acc (mg) [-00089.84, 00001.46, 01025.39], Gyr (DPS) [00001.19, 00000.60, 00002.05], Mag (uT) [00001.95, -00049.95, 00049.95], Tmp (C) [00024.16] Scaled. Acc (mg) [-00104.00, 00007.32, 01018.07], Gyr (DPS) [-00001.53, 00001.66, -00002.59], Mag (uT) [00002.70, -00051.45, 00048.75], Tmp (C) [00024.07] Scaled. Acc (mg) [-00087.89, -00003.91, 01010.74], Gyr (DPS) [-00000.18, 00001.04, 00001.18], Mag (uT) [00001.50, -00050.40, 00049.20], Tmp (C) [00024.16]	Send
Waiting for data Scaled. Acc (mg) [-00093.75, 00001.46, 01019.53], Gyr (DFS) [-00000.96, 00001.80, -00002.67], Mag (uT) [00001.05, -00049.95, 00049.50], Tmp (C) [00024.35] Scaled. Acc (mg) [-00090.82, 00010.74, 01012.21], Gyr (DFS) [00001.40, 00000.82, 00001.05], Mag (uT) [00002.10, -00050.10, 00049.05], Tmp (C) [00024.16] Scaled. Acc (mg) [-00089.84, 00001.46, 01025.39], Gyr (DFS) [00001.19, 00000.60, 00002.05], Mag (uT) [00001.95, -00049.95, 00049.95], Tmp (C) [00024.16] Scaled. Acc (mg) [-00104.00, 00007.32, 01018.07], Gyr (DFS) [-00001.53, 00001.66, -00002.59], Mag (uT) [00002.70, -00051.45, 00048.75], Tmp (C) [00024.07] Scaled. Acc (mg) [-00087.89, -00003.91, 01010.74], Gyr (DFS) [-00000.18, 00001.04, 00001.18], Mag (uT) [00001.50, -00050.40, 00049.20], Tmp (C) [00024.16]	
Scaled. Acc (mg) [-00090.82, 00010.74, 01012.21], Gyr (DPS) [00001.40, 00000.82, 00001.05], Mag (uT) [00002.10, -00050.10, 00049.05], Tmp (C) [00024.16] Scaled. Acc (mg) [-00089.84, 00001.46, 01025.39], Gyr (DPS) [00001.19, 00000.60, 00002.05], Mag (uT) [00001.95, -00049.95, 00049.95], Tmp (C) [00024.16] Scaled. Acc (mg) [-00104.00, 00007.32, 01018.07], Gyr (DPS) [-00001.53, 00001.66, -00002.59], Mag (uT) [00002.70, -00051.45, 00048.75], Tmp (C) [00024.07] Scaled. Acc (mg) [-00087.89, -00003.91, 01010.74], Gyr (DPS) [-00000.18, 00001.04, 00001.18], Mag (uT) [00001.50, -00050.40, 00049.20], Tmp (C) [00024.16]	
Scaled. Acc (mg) [-00050.82, 00010.74, 01012.21], Gyr (DPS) [00001.40, 00000.82, 00001.05], Mag (uT) [00002.10, -00050.10, 00049.05], Tmp (C) [00024.16] Scaled. Acc (mg) [-00089.84, 00001.46, 01025.39], Gyr (DPS) [00001.19, 00000.60, 00002.05], Mag (uT) [00001.95, -00049.95, 00049.95], Tmp (C) [00024.16] Scaled. Acc (mg) [-00104.00, 00007.32, 01018.07], Gyr (DPS) [-00001.53, 00001.66, -00002.59], Mag (uT) [00002.70, -00051.45, 00048.75], Tmp (C) [00024.07] Scaled. Acc (mg) [-00087.89, -00003.91, 01010.74], Gyr (DPS) [-00000.18, 00001.04, 00001.18], Mag (uT) [00001.50, -00050.40, 00049.20], Tmp (C) [00024.16]	
Scaled. Acc (mg) [-00089.84, 00001.46, 01025.39], Gyr (DFS) [00001.19, 00000.60, 00002.05], Mag (uT) [00001.95, -00049.95, 00049.95], Tmp (C) [00024.16] Scaled. Acc (mg) [-00104.00, 00007.32, 01018.07], Gyr (DFS) [-00001.53, 00001.66, -00002.59], Mag (uT) [00002.70, -00051.45, 00048.75], Tmp (C) [00024.07] Scaled. Acc (mg) [-00087.89, -00003.91, 01010.74], Gyr (DFS) [-00000.18, 00001.04, 00001.18], Mag (uT) [00001.50, -00050.40, 00049.20], Tmp (C) [00024.16]	
Scaled. Acc (mg) [-00104.00, 00007.32, 01018.07], Gyr (DFS) [-00001.53, 00001.66, -00002.59], Mag (uT) [00002.70, -00051.45, 00048.75], Tmp (C) [00024.07] Scaled. Acc (mg) [-00087.89, -00003.91, 01010.74], Gyr (DFS) [-00000.18, 00001.04, 00001.18], Mag (uT) [00001.50, -00050.40, 00049.20], Tmp (C) [00024.16]	
Scaled. Acc (mg) [-00087.89, -00003.91, 01010.74], Gyr (DPS) [-00000.18, 00001.04, 00001.18], Mag (uT) [00001.50, -00050.40, 00049.20], Tmp (C) [00024.16]	
Sealed acc (mg) [-00087 89 -00004 39 01024 90] (cur (509) [00003 80 -00001 62 -00000 11] Mag (10) [00001 95 -00050 70 0 0050 70] (mm) (c) [00024 26]	
beared, wee (mg) (00001.05, 00001.05, 00001.05, 00000.11], mg (c) (00001.05, 000001.05, 000001.05, 000001.05,	
Scaled. Acc (mg) [-00096.19, 00007.32, 01017.09], Gyr (DPS) [00000.19, 00002.37, -00002.16], Mag (uT) [00002.10, -00050.55, 00049.05], Tmp (C) [00024.35]	
Scaled. Acc (mg) [-00089.36, -00002.44, 01021.97], Gyr (DPS) [00000.73, -00000.73, 00004.83], Mag (uT) [00003.30, -00050.10, 00050.10], Tmp (C) [00024.40]	
Scaled. Acc (mg) [-00100.59, -00002.93, 01012.21], Gyr (DPS) [00001.35, 00000.65, 00001.63], Mag (uT) [00002.25, -00050.70, 00049.95], Tmp (C) [00024.07]	
Scaled. Acc (mg) [-00103.52, -00001.46, 01014.16], Gyr (DFS) [-00000.80, 00001.38, -00004.44], Mag (uT) [00001.05, -00050.40, 00049.20], Tmp (C) [00024.35]	
Scaled. Acc (mg) [-00095.21, -00000.49, 01015.14], Gyr (DPS) [00000.66, -00000.41, 00001.28], Mag (uT) [00001.95, -00051.00, 00049.20], Tmp (C) [00024.45]	
Newline V 115200 baud V	Clear output




Prof. Kirstin Hagelskjær Petersen kirstin@cornell.edu

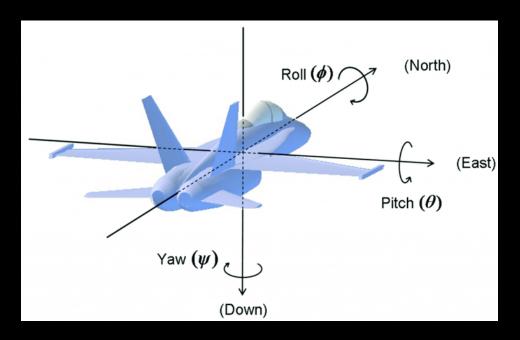
ACCELEROMETER



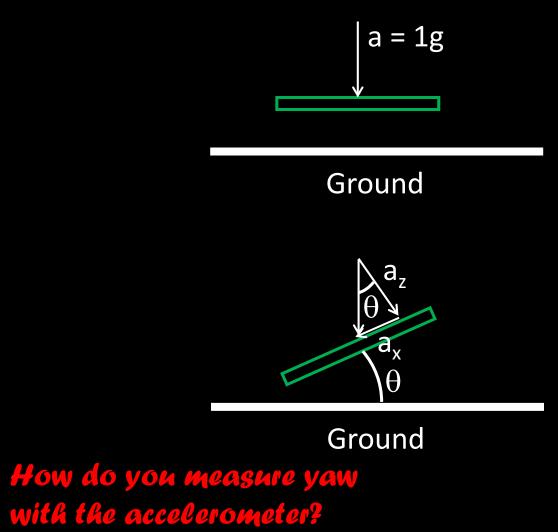


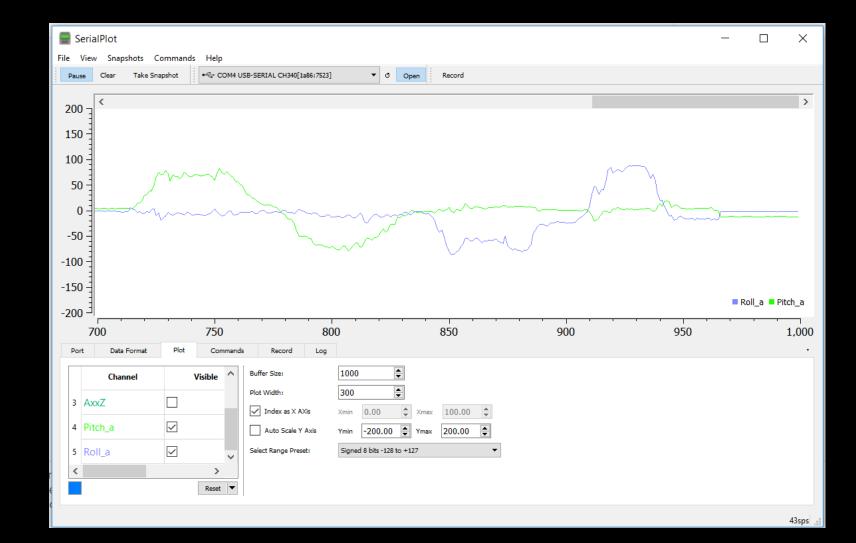
suspended conductive material conductive beams (fixed)

- Measuring acceleration in 3D
- Micro-Electro-Mechanical Systems

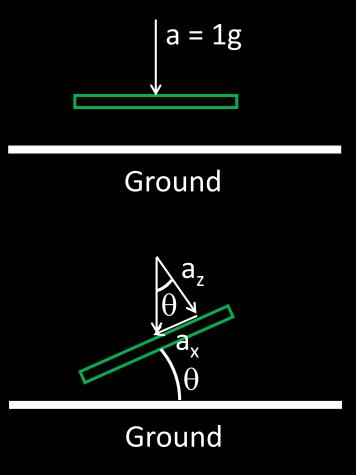


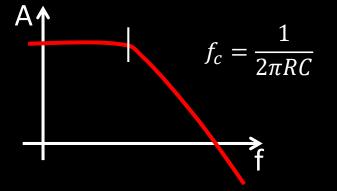
- Measuring acceleration in 3D
- Use a program like SerialPlot to visualize your data

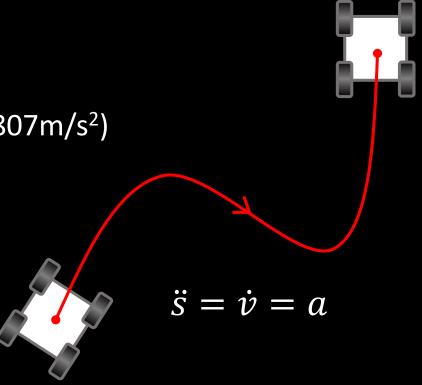



• How to use the accelerometer to determine roll, tilt, and yaw?

- $a_x = 1g \sin \theta$
- $a_z = 1g \cos \theta$
- $a_x / a_z = \tan \theta$
- $\theta = \operatorname{atan}(a_x/a_z)$ $\phi = \operatorname{atan}(a_y/a_z)$
 - Remember, use atan2!

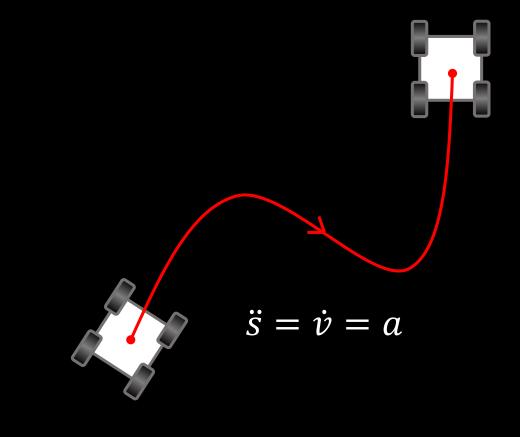

- Determining tilt and roll
- $\theta = \operatorname{atan}(a_x/a_z)$
- $\phi = \operatorname{atan}(a_y/a_z)$




- Determining tilt and roll
- Good (very accurate on average) vs Bad (noisy)
- Low pass complimentary filter

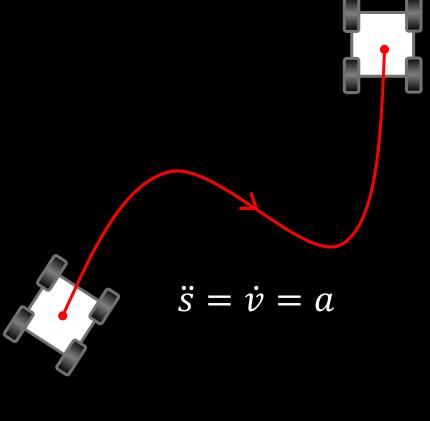
•
$$\theta_{\text{LPF}}[n] = \alpha * \theta + (1 - \alpha) * \theta_{\text{LPF}}[n-1]$$

• $\theta_{\text{LPF}}[n-1] = \theta_{\text{LPF}}[n]$
• $\alpha = \frac{T}{T+RC}$

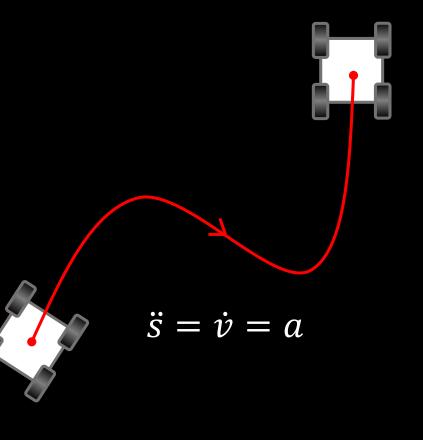

- Determining tilt and roll
- How to use the accelerometer to do dead reckoning?
 - $v = \int a$
 - s= $\int \int a$
 - v[k+1]=v[k]+a[k]*dt
 - s[k+1]=s[k]+v[k]*dt
- *Remember:* The accelerometer output is in mg (1g = 9.807m/s²)

- Determining tilt and roll
- How to use the accelerometer to do dead reckoning?
 - *Issue:* Distinguishing acceleration of the sensor from gravitational acceleration

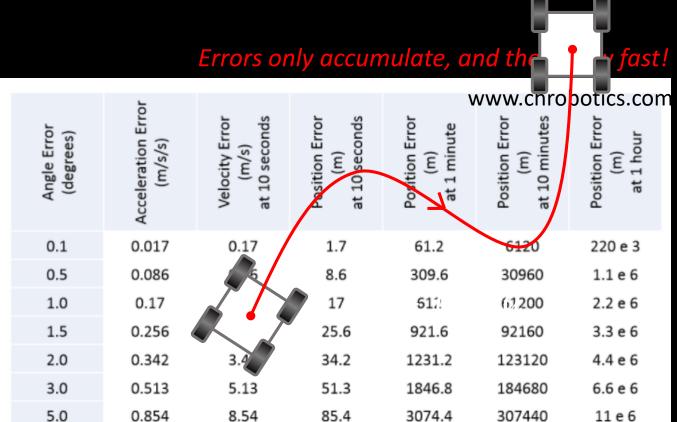
× Send


💿 COM3			- 0
Waiting for data			
dt= 0.01s, Acc = -0.01mg	Speed = -0.01m/s,	Dis = -0.00m	
dt= 0.01s, Acc = -0.04mg	Speed = $-0.03m/s$,	Dis = -0.01m	
dt= 0.01s, Acc = -0.15mg	Speed = $-0.07m/s$,	Dis = -0.03m	
dt= 0.01s, Acc = -0.15mg	Speed = -0.13m/s,	Dis = -0.06m	
dt= 0.01s, Acc = -0.17mg	Speed = $-0.19m/s$,	Dis = -0.12m	
dt= 0.01s, Acc = -0.17mg	Speed = -0.26m/s,	Dis = -0.19m	
dt= 0.01s, Acc = -0.18mg	Speed = $-0.34m/s$,	Dis = -0.30m	
dt= 0.01s, Acc = -0.21mg	Speed = -0.41m/s,	Dis = -0.43m	
dt= 0.01s, Acc = -0.22mg	Speed = $-0.50m/s$,	Dis = -0.58m	
dt= 0.01s, Acc = -0.25mg	Speed = $-0.59m/s$,	Dis = -0.77m	
dt= 0.01s, Acc = -0.27mg	Speed = $-0.69m/s$,	Dis = -0.99m	
dt= 0.01s, Acc = -0.28mg	Speed = $-0.79m/s$,	Dis = -1.25m	
dt= 0.01s, Acc = -0.29mg	Speed = $-0.90m/s$,	Dis = -1.54m	
dt= 0.01s, Acc = -0.31mg	Speed = $-1.02m/s$,	Dis = -1.87m	
dt= 0.01s, Acc = -0.32mg	Speed = $-1.14m/s$,	Dis = -2.24m	
dt= 0.01s, Acc = -0.34mg	Speed = $-1.26m/s$,	Dis = -2.66m	
dt= 0.01s, Acc = -0.35mg	Speed = $-1.39m/s$,	Dis = -3.12m	
dt= 0.01s, Acc = -0.36mg	Speed = $-1.52m/s$,	Dis = -3.62m	
dt= 0.01s, Acc = -0.35mg	Speed = $-1.65m/s$,	Dis = -4.17m	
dt= 0.01s, Acc = -0.36mg	Speed = $-1.79m/s$,	Dis = -4.76m	
dt= 0.01s, Acc = -0.36mg	Speed = -1.92m/s,	Dis = -5.40m	
dt= 0.01s, Acc = -0.34mg	Speed = $-2.05m/s$,	Dis = -6.09m	
dt= 0.01s, Acc = -0.35mg	Speed = $-2.18m/s$,	Dis = -6.82m	
dt= 0.01s, Acc = -0.37mg	Speed = $-2.32m/s$,	Dis = -7.60m	
dt= 0.01s, Acc = -0.38mg	Speed = $-2.46m/s$,	Dis = -8.43m	

Newline

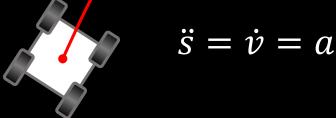

- Determining tilt and roll
- How to use the accelerometer to do dead reckoning?
 - *Issue:* Distinguishing acceleration of the sensor from gravitational acceleration
 - Solution 1: Calibrate the offset

○ COM4		×
		Send
Initialization of the sensor returned: All is well.		^
dt= 0.27s, Acc = -0.00mg, Speed = 0.56m/s, Dis = 0.09m		
dt= 0.01s, Acc = -0.01mg, Speed = 0.56m/s, Dis = 0.28m		
dt= 0.01s, Acc = 0.01mg, Speed = 0.56m/s, Dis = 0.47m		
dt= 0.01s, Acc = 0.00mg, Speed = 0.56m/s, Dis = 0.66m		
dt= 0.01s, Acc = -0.01mg, Speed = 0.56m/s, Dis = 0.85m		
dt= 0.01s, Acc = 0.01mg, Speed = 0.56m/s, Dis = 1.04m		
dt= 0.01s, Acc = 0.00mg, Speed = 0.56m/s, Dis = 1.23m		
dt= 0.01s, Acc = -0.01mg, Speed = 0.56m/s, Dis = 1.42m		
dt= 0.01s, Acc = 0.01mg, Speed = 0.56m/s, Dis = 1.61m		
dt= 0.01s, Acc = 0.00mg, Speed = 0.56m/s, Dis = 1.80m		
dt= 0.01s, Acc = -0.00mg, Speed = 0.56m/s, Dis = 1.99m		
dt= 0.01s, Acc = -0.00mg, Speed = 0.56m/s, Dis = 2.18m		
dt= 0.01s, Acc = -0.02mg, Speed = 0.55m/s, Dis = 2.37m		
dt= 0.01s, Acc = -0.00mg, Speed = 0.55m/s, Dis = 2.55m		
dt= 0.01s, Acc = -0.02mg, Speed = 0.55m/s, Dis = 2.74m		
dt= 0.01s, Acc = -0.00mg, Speed = 0.54m/s, Dis = 2.93m		
dt= 0.01s, Acc = -0.02mg, Speed = 0.54m/s, Dis = 3.11m		
dt= 0.01s, Acc = -0.01mg, Speed = 0.54m/s, Dis = 3.29m		
dt= 0.01s, Acc = 0.00mg, Speed = 0.53m/s, Dis = 3.47m		
$dt = 0.01e \lambda_{CC} = -0.01mc \text{Speed} = 0.53m/e \text{Die} = 3.66m$		×
Autoscroll Show timestamp Newline V 115200 baud V	Clea	r output



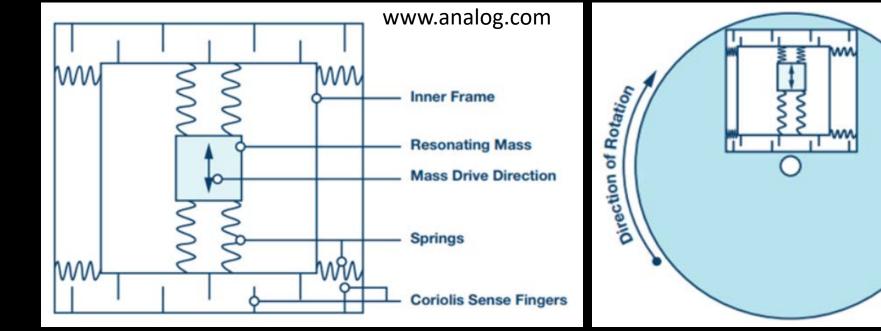
- Determining tilt and roll
- How to use the accelerometer to do dead reckoning?
 - Issue: Distinguishing acceleration of the sensor from gravitational acceleration
 - Solution 1: Calibrate the offset
 - Solution 2: Low pass filter the output
 - Solution 3: Minimum signal cut-off

0	COM4	–
		Send
dt=	= 0.27s, Acc = 0.00mg, Speed = 0.00m/s, Dis = 0.00m	^
dt=	= 0.01s, Acc = 0.00mg, Speed = 0.00m/s, Dis = 0.00m	
dt=	= 0.01s, Acc = 0.00mg, Speed = 0.00m/s, Dis = 0.00m	
dt=	= 0.01s, Acc = 0.00mg, Speed = 0.00m/s, Dis = 0.00m	
dt=	= 0.01s, Acc = 0.00mg, Speed = 0.00m/s, Dis = 0.00m	
dt=	= 0.01s, Acc = 0.00mg, Speed = 0.00m/s, Dis = 0.00m	
dt=	= 0.01s, Acc = 0.00mg, Speed = 0.00m/s, Dis = 0.00m	
dt=	= 0.01s, Acc = 0.00mg, Speed = 0.00m/s, Dis = 0.00m	
dt=	= 0.01s, Acc = 0.00mg, Speed = 0.00m/s, Dis = 0.00m	
dt=	= 0.01s, Acc = 0.02mg, Speed = 0.01m/s, Dis = 0.00m	
dt=	= 0.01s, Acc = 0.00mg, Speed = 0.01m/s, Dis = 0.00m	
dt=	= 0.01s, Acc = 4.40mg, Speed = 0.93m/s, Dis = 0.12m 🗲	—— ~10cm displacement
dt=	= 0.01s, Acc = 0.24mg, Speed = 1.54m/s, Dis = 0.58m	
dt=	= 0.01s, Acc = 0.01mg, Speed = 1.58m/s, Dis = 1.11m	
dt=	= 0.01s, Acc = 0.00mg, Speed = 1.59m/s, Dis = 1.65m	×
	Autoscroll Show timestamp	Newline \checkmark 115200 baud \checkmark Clear output



- Determining tilt and roll
- How to use the accelerometer to do dead reckoning?
 - *Issue:* Distinguishing acceleration of the sensor from gravitational acceleration
 - Solution 1: Calibrate the offset
 - *Solution 2:* Low pass filter the output
 - Solution 3: Minimum signal cut-off

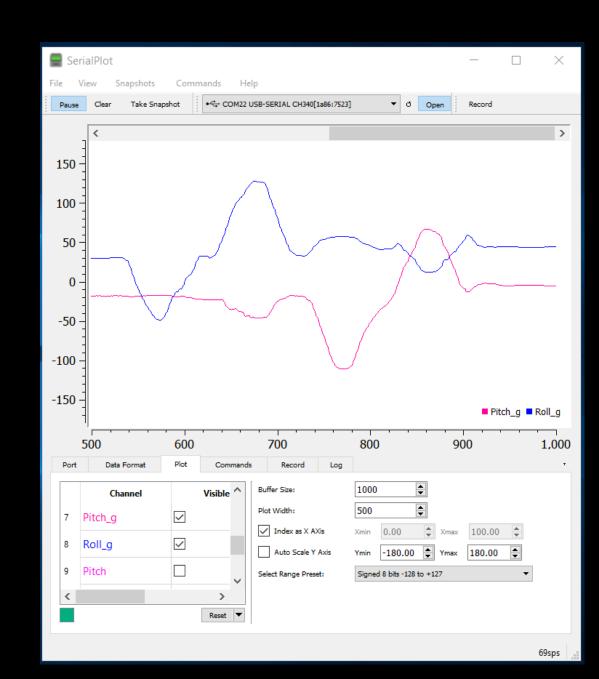
- Determining tilt and roll
- How to use the accelerometer to do dead reckoning?
 - *Issue:* Distinguishing acceleration of the sensor from gravitational acceleration
 - Solution 1: Calibrate the offset
 - *Solution 2:* Low pass filter the output
 - Solution 3: Minimum signal cut-off
 - *Solution 4:* Stop periodically and zero the velocity
 - *Solution 5:* Use in combination with TOF sensor on straight line segments
 - Solution 6: Buy a more expensive IMU
 - etc...


ECE 4960

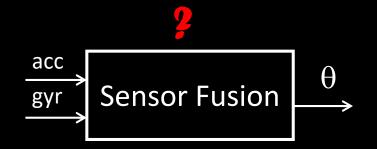
Prof. Kirstin Hagelskjær Petersen kirstin@cornell.edu

GYROSCOPE

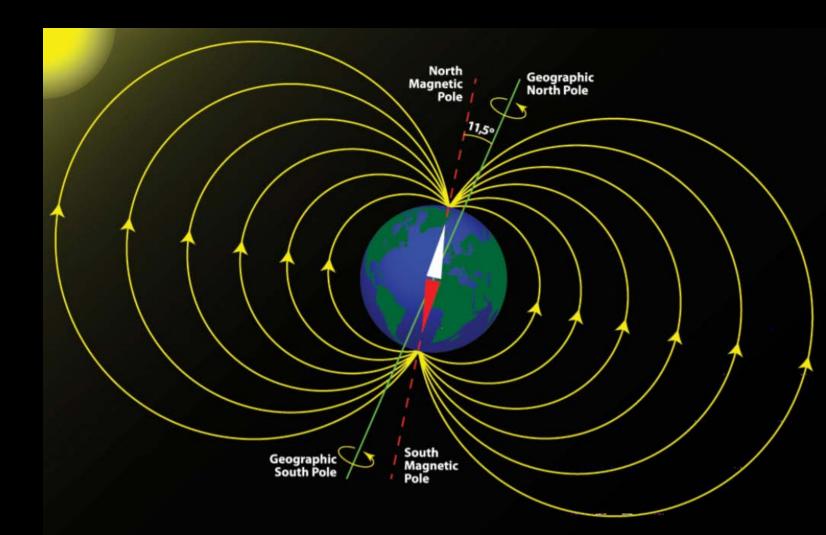
• Measures the rate of angular change [deg/s]

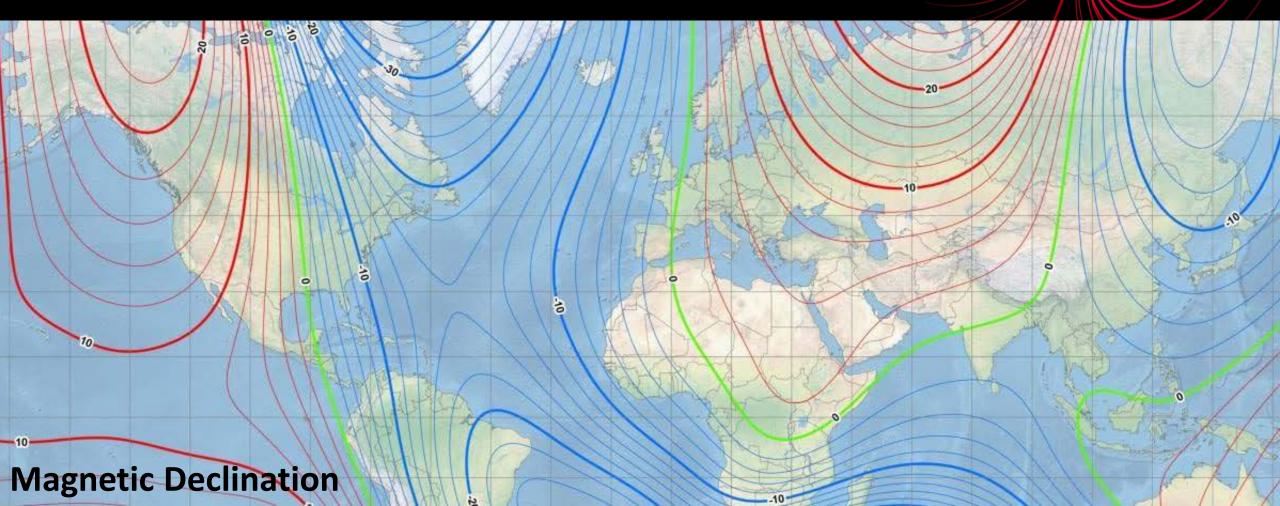


• Measures the rate of angular change [deg/s]



- Measures the rate of angular change [deg/s]
- How to use the gyroscope to measure angles?
 - $\theta_{g} = \theta_{g} gyr_reading*dt$
- Drift, but low noise

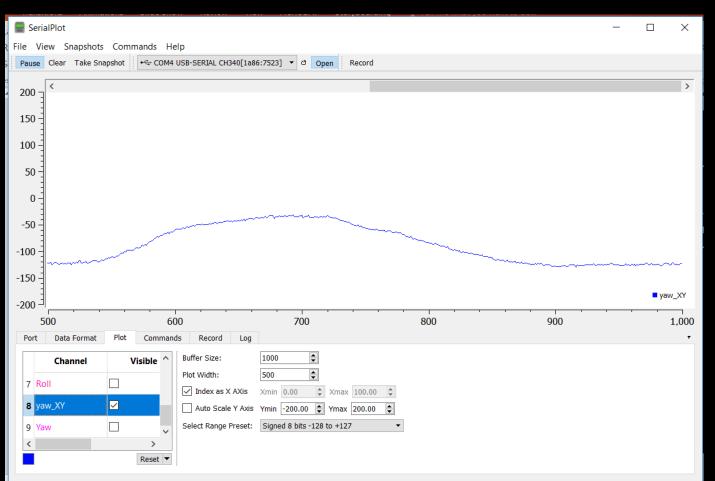

- Measures the rate of angular change [deg/s]
- How to use the gyroscope to measure angles?
 - $\theta_{g} = \theta_{g} gyr_reading*dt$
- Drift, but low noise
 - Complimentary to the accelerometer!
- Complimentary filter:
 - $\theta = (\theta + \theta_g * dt)(1-\alpha) + \theta_a \alpha$

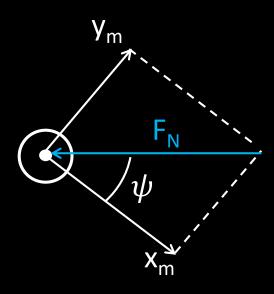

Can we also estimate yaw?

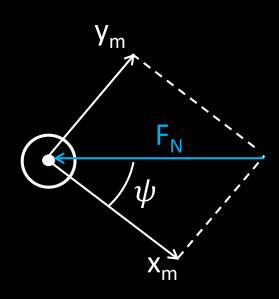
• Yes! (but there is no complementary data from the accelerometer)

- Measure the Earth's magnetic field [Gauss] or [uT]
- The actual direction depends on latitude, longitude, and time

- Measure the Earth's magnetic field [Gauss] or [uT]
- The actual direction depends on latitude, longitude, and time
- Distortions due to metal objects or nearby EM fields

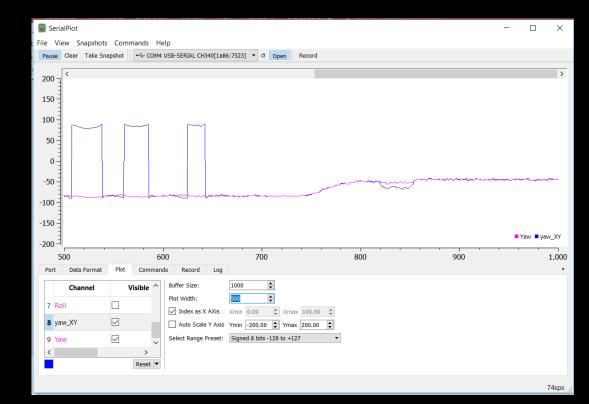


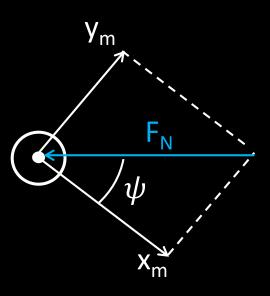

- Measure the Earth's magnetic field [Gauss] or [uT]
- The actual direction depends on latitude, longitude, and time
- Distortions due to metal objects or nearby EM fields
 - Examples?



- Measure the Earth's magnetic field [Gauss] or [uT]
- $\psi = \operatorname{atan}\left(\frac{y_m}{x_m}\right)$

- Measure the Earth's magnetic field [Gauss] or [uT]
- $\psi = \operatorname{atan}\left(\frac{y_m}{x_m}\right)$
- What if you are also experiencing pitch and roll?
 - Fuse accelerometer + gyroscope + magnetometer data
- Tilt-compensated compass
 - $\begin{bmatrix} x_m \\ y_m \\ z_m \end{bmatrix} = R_{x,\phi} R_{y,\theta} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$


•
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = R_{x,\phi}^{T} R_{y,\theta}^{T} \begin{bmatrix} x_m \\ y_m \\ z_m \end{bmatrix} = \begin{bmatrix} \cos(\theta) & 0 & -\sin(\theta) \\ \sin(\phi)\sin(\theta) & \cos(\phi) & \cos(\theta)\sin(\phi) \\ \cos(\phi)\sin(\theta) & -\sin(\phi) & \cos(\phi)\cos(\theta) \end{bmatrix} \begin{bmatrix} x_m \\ y_m \\ z_m \end{bmatrix}$$


•
$$x = y_m * \cos(\phi) - z_m * \sin(\phi);$$

• $y = x_m * \cos(\theta) + y_m * \sin(\phi) * \sin(\theta) + z_m * \cos(\phi) * \sin(\theta);$

•
$$\psi$$
 = atan2(y,x)

- Measure the Earth's magnetic field [Gauss] or [uT]
- $\psi = \operatorname{atan}\left(\frac{y_m}{x_m}\right)$
- What if you are also experiencing pitch and roll?
 - Fuse accelerometer + gyroscope + magnetometer data
- Tilt-compensated compass

Lab 3: Characterize your Car

- Open ended...
 - But we expect *useful* data
 - Qualitative and quantitative analysis
 - Structured experiments
 - Proof and replicas
- What would be helpful to know?
 - Dimension (chassis/wheels)
 - Mass

Measure

Experimental

- Battery life time
- Static friction
- Braking distance
- Velocity range / motor supply voltage
- Acceleration range
- Tricks

How would you set this up? How would you measure this?

- Feel free to work in teams (remember to give credits)
- Set aside time every day
- Deliverable: Github page and 3-5 min presentation 9/29th

Sources and References

- <u>http://www.chrobotics.com/library/accel-position-velocity</u>
- EE 267 Virtual Reality, by Gordon Wetzstein at Stanford University
- Analog.com
- https://toptechboy.com/

