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• Example: Accelerometer
• Solution?

• Average over multiple samples
• mean = -9.97306mg
• std dev = 7.0318mg

Noisy Sensors
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• Normal distributions
• Described with 2 numbers

• [μ∓σ]
• Symmetric
• Unimodal
• Sums to unity

• Probabilistic robotics
• Measurements are uncertain
• Actions are uncertain
• States are uncertain



Bayesian Inference
• Bayesian inference = guessing in the style of Bayes

• Example
• Campuswire: The robot stopped moving, the hardware is 

broken, send me new parts
• What is the probability that the robot is broken, given that 

it stopped moving?
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Bayesian Inference
• Bayesian inference = guessing in the style of Bayes

• Example
• Campuswire: The robot stopped moving, the hardware is 

broken, send me new parts
• What is the probability that the robot is broken, given 

that it stopped moving?
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Bayesian Inference
• Bayesian inference = guessing in the style of Bayes

• Example
• Campuswire: The robot stopped moving, the hardware 

is broken, send me new parts
• What is the probability that the robot is broken, given 

that it stopped moving?
• Translate to math

• P(something) = #something / #everything
• Before lab 3:

• P(broken) = #broken / #kits = 20 / 100 = 0.2
• P(working) = #working / #kits = 80 / 100 = 0.8

• After lab 3:
• P(broken) = #broken / #kits = 50 / 100 = 0.5
• P(working) = #working / #kits = 50 / 100 = 0.5 Be
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Bayesian Inference
• Bayesian inference = guessing in the style of Bayes

• Example
• Campuswire: The robot stopped moving, the hardware 

is broken, send me new parts
• What is the probability that the robot is broken, given 

that it stopped moving?
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• Conditional Probability
• If you know that the robot is broken, what is the probability 

that it stopped moving?
• P(no motion | broken) = #broken and no motion / #broken
• After lab 3 = 48/50 = 0.96
• P(no motion | working) = #working and no motion / #working
• After lab 3  = 20/50 = 0.40



Bayesian Inference
• Bayesian inference = guessing in the style of Bayes

• Example
• Campuswire: The robot stopped moving, the hardware 

is broken, send me new parts
• What is the probability that the robot is broken, given 

that it stopped moving?

Be
fo

re
 la

b 
3

broken

1

working

32

48

19

Af
te

r l
ab

 3

broken

48

2

working

20

30

• Conditional Probability
• If you know that the robot is broken, what is the probability 

that it stopped moving?
• P(no motion | broken) = #broken and no motion / #broken
• Before lab 3 = 19/20 = 0.96
• P(no motion | working) = #working and no motion / #working
• Before lab 3  = 32/80 = 0.40



Bayesian Inference
• Bayesian inference = guessing in the style of Bayes

• Example
• Campuswire: The robot stopped moving, the hardware 

is broken, send me new parts
• What is the probability that the robot is broken, given 

that it stopped moving?

• Conditional Probability
• If you know that the robot is broken, what is the 

probability that it stopped moving?
• P(A|B) is the probability of A, given B
• Note: P(A|B) is not equal to P(B|A)

• P(cute|puppy) ≠ P(puppy|cute)
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Bayesian Inference
• Bayesian inference = guessing in the style of Bayes

• Example
• Campuswire: The robot stopped moving, the hardware 

is broken, send me new parts
• What is the probability that the robot is broken, given 

that it stopped moving?

• Joint Probability
• What is the probability that the robot is both broken 

and not moving?
• P(broken and not moving) 

= P(broken)*P(not moving | broken)
= 0.5 * 0.96 = 0.48
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Bayesian Inference
• Bayesian inference = guessing in the style of Bayes

• Example
• Campuswire: The robot stopped moving, the hardware 

is broken, send me new parts
• What is the probability that the robot is broken, given 

that it stopped moving?
• Joint Probability

• What is the probability that the robot is both broken and 
not moving?

• P(broken and not moving) 
= P(broken)*P(not moving | broken)
= 0.20 * 0.96 = 0.192

• P(working and moving)
= P(working)*P(moving | working)
= 0.80 * 0.60 = 0.48

P(working and moving) 
= 0.48
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Bayesian Inference
• Bayesian inference = guessing in the style of Bayes

• Example
• Campuswire: The robot stopped moving, the hardware 

is broken, send me new parts
• What is the probability that the robot is broken, given 

that it stopped moving?
• Joint Probability

• What is the probability that the robot is both broken and 
not moving?

• P(A, B) = P(AꓵB) = P(A and B) 
• P(AꓵB) = P(A)*P(B|A)
• P(AꓵB) = P(BꓵA)

P(working and moving) 
= 0.48
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Bayesian Inference
• Bayesian inference = guessing in the style of Bayes

• Example
• Campuswire: The robot stopped moving, the hardware 

is broken, send me new parts
• What is the probability that the robot is broken, given 

that it stopped moving?

• Marginal Probability
• P(moving) 

= P(broken and moving) + P(working and moving)
= 1/100 + 48/100 = 0.49

• P(not moving)
= 19/100 + 32/100 = 0.51

P(working and moving) 
= 0.48
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Bayesian Inference
• Bayesian inference = guessing in the style of Bayes

• Example
• Campuswire: The robot stopped moving, the hardware 

is broken, send me new parts
• What is the probability that the robot is broken, given 

that it stopped moving?
• P(broken | not moving) = ???

• P(broken and not moving) 
= P(not moving)*P(broken|not moving)

• P(not moving and broken) 
= P(broken)*P(not moving|broken)

• P(broken|not moving) = P(broken)*P(not moving|broken)

• Before lab 3 = 0.2*0.96 / 0.51 = 0.38
• After lab 3 = 0.5*0.96 / 0.68 = 0.71

P(not moving)
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Bayesian Inference
• Bayesian inference = guessing in the style of Bayes

𝑃𝑃 𝐴𝐴|𝐵𝐵 =
𝑃𝑃 𝐵𝐵|𝐴𝐴 𝑃𝑃(𝐴𝐴)

𝑃𝑃(𝐵𝐵)
conditional probability

prior

posterior

likelihood

marginal likelihood
(constant)
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• Conditional probability
• You meet a guy, and he says he has a sibling, what is the probability that the sibling 

is female?
• guy/girl
• guy/guy
• girl/guy
• girl/girl (<ruled out)
• 33%

• Independent / dependent variables

Exercise

dm

dr



𝑃𝑃 𝐴𝐴|𝐵𝐵 =
𝑃𝑃 𝐵𝐵|𝐴𝐴 𝑃𝑃(𝐴𝐴)

𝑃𝑃(𝐵𝐵)

Bayesian Inference
• Unrelated example, borrowed from “Bayes with Beans” by Myriam Hunink, Harvard

conditional probability

prior

posterior

likelihood

marginal likelihood
(constant)
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Bayesian Inference
• Unrelated example, borrowed from “Bayes with Beans” by Myriam Hunink, Harvard
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New info 
from test

Post-test 
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Bayesian Inference
• Unrelated example, borrowed from “Bayes with Beans” by Myriam Hunink, Harvard
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Bayesian Inference
• Unrelated example, borrowed from “Bayes with Beans” by Myriam Hunink, Harvard

• 100 people go to the doctor 
with a tick bite, worried they 
have Lyme disease

• A diagnostic test reveals 16 
positives, 84 negative

• Early tests are inaccurate:
• 40% of sick people will test 

positive
• 10% of healthy people will 

test positive



Bayesian Inference
• Unrelated example, borrowed from “Bayes with Beans” by Myriam Hunink, Harvard

Observation

16

84

D+ D-

20 80

T+

T-

• 100 people go to the doctor 
with a tick bite, worried they 
have Lyme disease

• A diagnostic test reveals 16 
positives, 84 negative

• Early tests are inaccurate:
• 40% of sick people will test 

positive
• 10% of healthy people will 

test positive
• Underlying truth:

• 20% are sick
• 80% are healthy

Underlying truth



Bayesian Inference
• Unrelated example, borrowed from “Bayes with Beans” by Myriam Hunink, Harvard

16T+

T-

D+ D-

12 72

8
=

8
16

= 50% = 𝑃𝑃(𝐷𝐷 + |𝑇𝑇+)

=
12
84

= 14% = 𝑃𝑃(𝐷𝐷 + |𝑇𝑇−)84

Observation Underlying truth

8



Bayesian Inference
• Unrelated example, borrowed from “Bayes with Beans” by Myriam Hunink, Harvard

T+

T-

D+ D-

True positive False positive

False negative True negative

T+

T-

D+ D-

True positive False positive

False negative True negative

𝑃𝑃(
𝐷𝐷

+
|𝑇𝑇

+
)

𝑃𝑃(
𝐷𝐷

+
|𝑇𝑇
−

)

Test results Prediction

Sensitivity Specificity
𝑃𝑃(𝑇𝑇 + |𝐷𝐷+) 𝑃𝑃(𝑇𝑇 − |𝐷𝐷−) 𝑃𝑃(𝑇𝑇 + |𝐷𝐷+) 𝑃𝑃(𝑇𝑇 − |𝐷𝐷−)



Bayesian Inference
• Unrelated example, borrowed from “Bayes with Beans” by Myriam Hunink, Harvard

Pre-test 
info

New info 
from test

Post-test 
info
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Probability Distribution
• Beliefs
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Probability Distribution
• Beliefs
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Probability Distribution
• Beliefs

head tail

0.5 0.5



Probability Distribution
• Beliefs

1 2 3 4
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Probability Distribution
• Beliefs

win loose

3.4e-9 0.9999…



Probability Distribution
• Beliefs
• Discrete -> continuous probability distribution

• Mean, median, most common value, etc.
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Probability Distributions
• What is the maximum speed of your robot?

• You weigh 8.8 ft/s, 6.6 ft/s, 8.33 ft/s, but what is the actual value?
• Frequentist Statistics

• Mean: μ = (8.8+6.6+8.33)/3 = 7.91
• Variance: σ2 = ((8.8-7.91) 2 + (6.6-7.92) 2 + (8.33-7.91)2)/(3-1) = 1.35
• Standard deviation: σ = sqrt (σ2)= 1.16
• Standard error: σ / sqrt(3) = 0.67

• Bayesian Statistics
• Probably 7.91ft/s…

Values from lab 3 What you observe (7.91±1.16 ft/s)
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Probability Distributions
• Use Bayes theorem
• Instead of A and B

• Substitute “s” for the actual speed
• Substitute “m” for the measurements

• P(s) is our prior
• P(m|s) is the likelihood associated with those measurements
• P(s|m) is what we believe about the speed given those measurements
• P(m) is the marginal likelihood
• Procedure:

• Start with a belief
• Update it
• End up with a new belief!

𝑃𝑃 𝐴𝐴|𝐵𝐵 =
𝑃𝑃 𝐵𝐵|𝐴𝐴 𝑃𝑃(𝐴𝐴)

𝑃𝑃(𝐵𝐵)



Probability Distributions
• Use Bayes theorem
• Start by assuming nothing

• P(s) = uniform
• P(s|m) = P(m|s)*c1/c2
• Simplified: P(s|m) = P(m|s)

• Guess! What if the actual max speed is 11 ft/s?
• P(s=11|m=[6.6,8.33,8.8]) = P(m=[6.6,8.33,8.8] | s=11)
• P(m = 6.6 | s = 11) * P(m = 8.33 | s = 11) * P(m = 8.8 | s = 11)

𝑃𝑃 𝐴𝐴|𝐵𝐵 =
𝑃𝑃 𝐵𝐵|𝐴𝐴 𝑃𝑃(𝐴𝐴)

𝑃𝑃(𝐵𝐵)
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Probability Distributions
• Use Bayes theorem
• Start by assuming nothing

• P(s) = uniform
• P(s|m) = P(m|s) * c1/c2
• Simplified: P(s|m) = P(m|s)

• Example, what if the actual max speed is 11 ft/s?
• P(s = 11 | m = [6.6, 8.33, 8.8]) = P(m = [6.6, 8.33, 8.8] | s = 11)
• P(m = 6.6 | s = 11) * P(m = 8.33 | s = 11) * P(m = 8.8 | s = 11)

𝑃𝑃 𝐴𝐴|𝐵𝐵 =
𝑃𝑃 𝐵𝐵|𝐴𝐴 𝑃𝑃(𝐴𝐴)

𝑃𝑃(𝐵𝐵)
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Probability Distributions
• Use Bayes theorem
• Add a prior!

• You know yesterday’s speed, and you can kind of judge the current speed by eye
• Prior: 7.91 ft/s ± 1.16ft/s

• P(s = 11 | m = [6.6, 8.33, 8.8]) = P(m = [6.6, 8.33, 8.8] | s = 11) * P(s = 11)
= P(m=6.6|s=11)*P(s=11) * P(m=8.33|s=11)*P(s=11) * P(m=8.8|s=11)*P(s=11)

Repeat the process!

𝑃𝑃 𝐴𝐴|𝐵𝐵 =
𝑃𝑃 𝐵𝐵|𝐴𝐴 𝑃𝑃(𝐴𝐴)

𝑃𝑃(𝐵𝐵)
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Probability Distributions
• Use Bayes theorem
• Add a prior!

• You know yesterday’s speed, and you can kind of judge the current speed by eye
• Prior: 7.91 ft/s ± 1.16ft/s

• P(s = 11 | m = [6.6, 8.33, 8.8]) = P(m = [6.6, 8.33, 8.8] | s = 11) * P(s = 11)
= P(m=6.6|s=11)*P(s=11) * P(m=8.33|s=11)*P(s=11) * P(m=8.8|s=11)*P(s=11)

Repeat the process!
Add everything up to get the posterior distribution

𝑃𝑃 𝐴𝐴|𝐵𝐵 =
𝑃𝑃 𝐵𝐵|𝐴𝐴 𝑃𝑃(𝐴𝐴)

𝑃𝑃(𝐵𝐵)

Maximum A Posteriori 
(MAP)
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Probability Distributions
• Always believe the impossible, at least a little 

bit!
• Leave room for believing the unlikely. Leave a 

non-zero probability unless you are absolutely 
certain.

• “It ain’t what you don’t know that gets you into 
trouble. It’s what you know for sure that just 
ain’t so.” –Mark Twain

• “When you have excluded the impossible, 
whatever remains, however improbable, must 
be true. “ Sherlock Holmes (Sir Arthur Conan 
Doyle)

Alice’s adventures in wonderland



References
• Probabilistic Robotics, book by Dieter Fox, Sebastian Thrun, and Wolfram Burgard
• How Bayes Theorem works (Youtube), by Brandon Rohrer
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