ECE 4960

Prof. Kirstin Hagelskjær Petersen kirstin@cornell.edu

Fast Robots

Noisy Sensors

- Example: Accelerometer
- Solution?
 - Average over multiple samples
 - mean = -9.97306mg
 - std dev = 7.0318mg
- Normal distributions
 - Described with 2 numbers
 - $[\mu \mp \sigma]$
 - Symmetric
 - Unimodal
 - Sums to unity
- Probabilistic robotics
 - Measurements are uncertain
 - Actions are uncertain
 - States are uncertain

- Bayesian inference = guessing in the style of Bayes
- Example
 - Campuswire: The robot stopped moving, the hardware is broken, send me new parts
 - What is the probability that the robot is broken, given that it stopped moving?

- Bayesian inference = guessing in the style of Bayes
- Example
 - Campuswire: The robot stopped moving, the hardware is broken, send me new parts
 - What is the probability that the robot is broken, given that it stopped moving?

- Bayesian inference = guessing in the style of Bayes
- Example
 - Campuswire: The robot stopped moving, the hardware is broken, send me new parts
 - What is the probability that the robot is broken, given that it stopped moving?
- Translate to math
 - P(something) = #something / #everything
 - Before lab 3:
 - P(broken) = #broken / #kits = 20 / 100 = 0.2
 - P(working) = #working / #kits = 80 / 100 = 0.8
 - After lab 3:
 - P(broken) = #broken / #kits = 50 / 100 = 0.5
 - P(working) = #working / #kits = 50 / 100 = 0.5

- Bayesian inference = guessing in the style of Bayes
- Example
 - Campuswire: The robot stopped moving, the hardware is broken, send me new parts
 - What is the probability that the robot is broken, given that it stopped moving?
- Conditional Probability
 - If you know that the robot is broken, what is the probability that it stopped moving?
 - P(no motion | broken) = #broken and no motion / #broken
 - After lab 3 = 48/50 = 0.96
 - P(no motion | working) = #working and no motion / #working
 - After lab 3 = 20/50 = 0.40

- Bayesian inference = guessing in the style of Bayes
- Example
 - Campuswire: The robot stopped moving, the hardware is broken, send me new parts
 - What is the probability that the robot is broken, given that it stopped moving?
- Conditional Probability
 - If you know that the robot is broken, what is the probability that it stopped moving?
 - P(no motion | broken) = #broken and no motion / #broken
 - Before lab 3 = 19/20 = 0.96
 - P(no motion | working) = #working and no motion / #working
 - Before lab 3 = 32/80 = 0.40

- Bayesian inference = guessing in the style of Bayes
- Example
 - Campuswire: The robot stopped moving, the hardware is broken, send me new parts
 - What is the probability that the robot is broken, given that it stopped moving?
- Conditional Probability
 - If you know that the robot is broken, what is the probability that it stopped moving?
 - P(A|B) is the probability of A, given B
 - Note: P(A|B) is not equal to P(B|A)
 - P(cute|puppy) ≠ P(puppy|cute)

- Bayesian inference = guessing in the style of Bayes
- Example
 - Campuswire: The robot stopped moving, the hardware is broken, send me new parts
 - What is the probability that the robot is broken, given that it stopped moving?
- Joint Probability
 - What is the probability that the robot is both broken and not moving?
 - P(broken and not moving)
 - = P(broken)*P(not moving | broken)
 - = 0.5 * 0.96 = 0.48

- Bayesian inference = guessing in the style of Bayes
- Example
 - *Campuswire:* The robot stopped moving, the hardware is broken, send me new parts
 - What is the probability that the robot is broken, given igodolthat it stopped moving?
- **Joint Probability** ightarrow
 - What is the probability that the robot is both broken and not moving?
 - P(broken and not moving) \bullet
 - = P(broken)*P(not moving | broken)
 - = 0.20 * 0.96 = 0.192
 - P(working and moving)
 - = P(working)*P(moving | working)
 - = 0.80 * 0.60 = 0.48

=0.19

- Bayesian inference = guessing in the style of Bayes
- Example
 - Campuswire: The robot stopped moving, the hardware is broken, send me new parts
 - What is the probability that the robot is broken, given that it stopped moving?
- Joint Probability
 - What is the probability that the robot is both broken and not moving?
 - $P(A, B) = P(A \cap B) = P(A \text{ and } B)$
 - $P(A\cap B) = P(A)*P(B|A)$
 - $P(A \cap B) = P(B \cap A)$

- Bayesian inference = guessing in the style of Bayes
- Example
 - Campuswire: The robot stopped moving, the hardware is broken, send me new parts
 - What is the probability that the robot is broken, given that it stopped moving?

Marginal Probability

- = 1/100 + 48/100 = 0.49
- P(not moving)
 - = 19/100 + 32/100 = 0.51

- Bayesian inference = guessing in the style of Bayes
- Example
 - Campuswire: The robot stopped moving, the hardware is broken, send me new parts
 - What is the probability that the robot is broken, given that it stopped moving?
 - P(broken | not moving) = ???
- P(broken and not moving)
 = P(not moving)*P(broken|not moving)
- P(not moving and broken)
 - = P(broken)*P(not moving|broken)
- P(broken | not moving) = <u>P(broken)*P(not moving | broken)</u> P(not moving)
- Before lab 3 = 0.2*0.96/0.51 = 0.38
- After lab 3 = 0.5*0.96 / 0.68 = 0.71

• Bayesian inference = guessing in the style of Bayes

Exercise

- Conditional probability
 - You meet a guy, and he says he has a sibling, what is the probability that the sibling is female?
 - guy/girl
 - guy/guy
 - girl/guy
 - girl/girl (<ruled out)
 - 33%
- Independent / dependent variables

- 100 people go to the doctor with a tick bite, worried they have Lyme disease
- A diagnostic test reveals 16 positives, 84 negative
- Early tests are inaccurate:
 - 40% of sick people will test positive
 - 10% of healthy people will test positive

- 100 people go to the doctor with a tick bite, worried they have Lyme disease
- A diagnostic test reveals 16 positives, 84 negative
- Early tests are inaccurate:
 - 40% of sick people will test positive
 - 10% of healthy people will test positive
- Underlying truth:
 - 20% are sick
 - 80% are healthy

- Beliefs
- Discrete -> continuous probability distribution
 - Mean, median, most common value, etc.

- What is the maximum speed of your robot?
 - You weigh 8.8 ft/s, 6.6 ft/s, 8.33 ft/s, but what is the actual value?
- Frequentist Statistics
 - Mean: $\mu = (8.8+6.6+8.33)/3 = 7.91$
 - Variance: $\sigma^2 = ((8.8-7.91)^2 + (6.6-7.92)^2 + (8.33-7.91)^2)/(3-1) = 1.35$
 - Standard deviation: $\sigma = \text{sqrt} (\sigma^2) = 1.16$
 - Standard error: $\sigma / sqrt(3) = 0.67$
- Bayesian Statistics
 - Probably 7.91ft/s...

- Use Bayes theorem
- Instead of A and B
 - Substitute "s" for the actual speed
 - Substitute "m" for the measurements
- P(s) is our prior
- P(m|s) is the likelihood associated with those measurements
- P(s|m) is what we believe about the speed given those measurements
- P(m) is the marginal likelihood
- Procedure:
 - Start with a belief
 - Update it
 - End up with a new belief!

- Use Bayes theorem
- Start by assuming nothing
 - P(s) = uniform
 - $P(s|m) = P(m|s)*c_1/c_2$
 - Simplified: P(s|m) = P(m|s)
 - *Guess!* What if the actual max speed is 11 ft/s?
 - P(s=11|m=[6.6,8.33,8.8]) = P(m=[6.6,8.33,8.8] | s=11)
 - P(m = 6.6 | s = 11) * P(m = 8.33 | s = 11) * P(m = 8.8 | s = 11)

- Use Bayes theorem
- Start by assuming nothing
 - P(s) = uniform
 - $P(s|m) = P(m|s) * c_1/c_2$
 - Simplified: P(s|m) = P(m|s)
 - Example, what if the actual max speed is 11 ft/s?
 - P(s = 11 | m = [6.6, 8.33, 8.8]) = P(m = [6.6, 8.33, 8.8] | s = 11)
 - P(m = 6.6 | s = 11) * P(m = 8.33 | s = 11) * P(m = 8.8 | s = 11)

- Use Bayes theorem
- Add a prior!
 - You know yesterday's speed, and you can kind of judge the current speed by eye
 - Prior: 7.91 ft/s \pm 1.16ft/s
 - P(s = 11 | m = [6.6, 8.33, 8.8]) = P(m = [6.6, 8.33, 8.8] | s = 11) * P(s = 11) = P(m=6.6 | s=11)*P(s=11) * P(m=8.33 | s=11)*P(s=11) * P(m=8.8 | s=11)*P(s=11) Repeat the process!

- Use Bayes theorem
- Add a prior!
 - You know yesterday's speed, and you can kind of judge the current speed by eye
 - Prior: 7.91 ft/s \pm 1.16ft/s
 - P(s = 11 | m = [6.6, 8.33, 8.8]) = P(m = [6.6, 8.33, 8.8] | s = 11) * P(s = 11)= P(m=6.6 | s=11) * P(s=11) * P(m=8.33 | s=11) * P(s=11) * P(m=8.8 | s=11) * P(s=11)

Repeat the process!

Add everything up to get the posterior distribution

Maximum A Posteriori (MAP)

- Always believe the impossible, at least a little bit!
- Leave room for believing the unlikely. Leave a non-zero probability unless you are absolutely certain.
- "It ain't what you don't know that gets you into trouble. It's what you know for sure that just ain't so." –Mark Twain
- "When you have excluded the impossible, whatever remains, however improbable, must be true." Sherlock Holmes (Sir Arthur Conan Doyle)

References

- Probabilistic Robotics, book by *Dieter Fox, Sebastian Thrun, and Wolfram Burgard*
- How Bayes Theorem works (Youtube), by Brandon Rohrer