ECE 4960

Prof. Kirstin Hagelskjær Petersen kirstin@cornell.edu

Fast Robots

Noisy Sensors

- Example: Accelerometer
- Solution?
- Average over multiple samples
- mean $=-9.97306 \mathrm{mg}$
- std dev $=7.0318 \mathrm{mg}$
- Normal distributions

- Described with 2 numbers
- $[\mu \mp \sigma]$
- Symmetric
- Unimodal
- Sums to unity
- Probabilistic robotics
- Measurements are uncertain
- Actions are uncertain

- States are uncertain

Bayesian Inference

- Bayesian inference = guessing in the style of Bayes
- Example
- Campuswire: The robot stopped moving, the hardware is broken, send me new parts
- What is the probability that the robot is broken, given that it stopped moving?
no motionmotion

working

Bayesian Inference

- Bayesian inference = guessing in the style of Bayes
- Example
- Campuswire: The robot stopped moving, the hardware is broken, send me new parts
- What is the probability that the robot is broken, given that it stopped moving?

nno motionmotion

After lab 3	broken	working
	48	20
		30
	2	

Bayesian Inference

broken working

- Bayesian inference = guessing in the style of Bayes
- Example
- Campuswire: The robot stopped moving, the hardware is broken, send me new parts
- What is the probability that the robot is broken, given that it stopped moving?
48
- Translate to math
- P(something) = \#something / \#everything
- Before lab 3:
- $\mathrm{P}($ broken $)=$ \#broken / \#kits = $20 / 100=0.2$
- P(working) = \#working / \#kits = $80 / 100=0.8$

broken
 working

	32
19	48

Bayesian Inference

- Bayesian inference = guessing in the style of Bayes
- Example
- Campuswire: The robot stopped moving, the hardware is broken, send me new parts
- What is the probability that the robot is broken, given that it stopped moving?
broken working
48
- Conditional Probability
broken working
- If you know that the robot is broken, what is the probability that it stopped moving?
- P(no motion | broken) = \#broken and no motion / \#broken

19	32
	48
1	

Bayesian Inference

- Bayesian inference = guessing in the style of Bayes
- Example
- Campuswire: The robot stopped moving, the hardware is broken, send me new parts
- What is the probability that the robot is broken, given that it stopped moving?
broken working
48
- Conditional Probability
broken working
- If you know that the robot is broken, what is the probability that it stopped moving?
- P(no motion | broken) = \#broken and no motion / \#broken

	32
19	
	48

Bayesian Inference

- Bayesian inference = guessing in the style of Bayes
- Example
- Campuswire: The robot stopped moving, the hardware is broken, send me new parts
- What is the probability that the robot is broken, given that it stopped moving?
broken working
48
- Conditional Probability
- If you know that the robot is broken, what is the probability that it stopped moving?
- $P(A \mid B)$ is the probability of A, given B
- Note: $P(A \mid B)$ is not equal to $P(B \mid A)$
- $P($ cute \mid puppy $) \neq \mathrm{P}$ (puppy|cute)
broken working

Bayesian Inference

- Bayesian inference = guessing in the style of Bayes
- Example
- Campuswire: The robot stopped moving, the hardware is broken, send me new parts
- What is the probability that the robot is broken, given that it stopped moving?
broken working
40
- Joint Probability
- What is the probability that the robot is both broken and not moving?
- P (broken and not moving)
$=\mathrm{P}($ broken $) *$ (not moving \mid broken $)$
$=0.5 * 0.96=0.48$
broken working

Bayesian Inference

broken working

- Bayesian inference = guessing in the style of Bayes
- Example
- Campuswire: The robot stopped moving, the hardware is broken, send me new parts
- What is the probability that the robot is broken, given that it stopped moving?

48	20
	30
2	

$P($ working $)=0.80$

- Joint Probability
working
- What is the probability that the robot is both broken and not moving?
- P(broken and not moving)
$=\mathrm{P}($ broken $) * \mathrm{P}$ (not moving | broken)
$=0.20$ * $0.96=0.192$
- P (working and moving)

$$
\begin{aligned}
& =P(\text { working }) * P \text { (moving } \mid \text { working }) \\
& =0.80 * 0.60=0.48
\end{aligned}
$$

broken

Bayesian Inference

broken working

- Bayesian inference = guessing in the style of Bayes
- Example
- Campuswire: The robot stopped moving, the hardware is broken, send me new parts
- What is the probability that the robot is broken, given that it stopped moving?
- Joint Probability
40
$P($ working $)=0.80$
- What is the probability that the robot is both broken and
- $P(A, B)=P(A \cap B)=P(A$ and $B)$
- $P(A \cap B)=P(A) * P(B \mid A)$
- $P(A \cap B)=P(B \cap A)$

Bayesian Inference

broken working

- Bayesian inference = guessing in the style of Bayes
- Example
- Campuswire: The robot stopped moving, the hardware is broken, send me new parts
- What is the probability that the robot is broken, given that it stopped moving?
48
$P($ working $)=0.80$
- Marginal Probability
- P (moving)
$=P$ (broken and moving) +P (working and moving)
$=1 / 100+48 / 100=0.49$
- P (not moving)
$=19 / 100+32 / 100=0.51$

Bayesian Inference

broken working

- Bayesian inference = guessing in the style of Bayes
- Example
- Campuswire: The robot stopped moving, the hardware is broken, send me new parts
- What is the probability that the robot is broken, given that it stopped moving?
- $\mathrm{P}($ broken | not moving) = ???
- P(broken and not moving)
$=\mathrm{P}$ (not moving)*P(broken|not moving)
- $P($ not moving and broken)
$=\mathrm{P}($ broken $) * \mathrm{P}$ (not moving | broken)
- P (broken|not moving) $=\mathrm{P}($ broken $) * \mathrm{P}$ (not moving \mid broken $)$ P(not moving)
- Before lab $3=0.2 * 0.96 / 0.51=0.38$
- After lab 3
$=0.5 * 0.96 / 0.68=0.71$

48	20
	30
2	

broken working

Bayesian Inference

- Bayesian inference = guessing in the style of Bayes

Exercise

- Conditional probability
- You meet a guy, and he says he has a sibling, what is the probability that the sibling is female?
- guy/girl
- guy/guy
- girl/guy
- girl/girl (<ruled out)
- 33\%
- Independent / dependent variables

Bayesian Inference

- Unrelated example, borrowed from "Bayes with Beans" by Myriam Hunink, Harvard

Bayesian Inference

- Unrelated example, borrowed from "Bayes with Beans" by Myriam Hunink, Harvard

New info from test

Post-test info

Bayesian Inference

- Unrelated example, borrowed from "Bayes with Beans" by Myriam Hunink, Harvard

New info from test

Post-test info

Bayesian Inference

- Unrelated example, borrowed from "Bayes with Beans" by Myriam Hunink, Harvard

- 100 people go to the doctor with a tick bite, worried they have Lyme disease
- A diagnostic test reveals 16 positives, 84 negative
- Early tests are inaccurate:
- 40% of sick people will test positive
- 10% of healthy people will test positive

Bayesian Inference

- Unrelated example, borrowed from "Bayes with Beans" by Myriam Hunink, Harvard

- 100 people go to the doctor with a tick bite, worried they have Lyme disease
- A diagnostic test reveals 16 positives, 84 negative
- Early tests are inaccurate:
- 40% of sick people will test positive
- 10% of healthy people will test positive
- Underlying truth:
- 20% are sick
- 80% are healthy

Bayesian Inference

- Unrelated example, borrowed from "Bayes with Beans" by Myriam Hunink, Harvard

Bayesian Inference

- Unrelated example, borrowed from "Bayes with Beans" by Myriam Hunink, Harvard

Bayesian Inference

- Unrelated example, borrowed from "Bayes with Beans" by Myriam Hunink, Harvard

New info from test

Probability Distribution

- Beliefs

Probability Distribution

- Beliefs

$$
\begin{array}{cc}
3.4 e-9 & 0.9999 . . \\
\hline \hline \text { win loose } &
\end{array}
$$

Probability Distribution

- Beliefs
- Discrete -> continuous probability distribution
- Mean, median, most common value, etc.

Probability Distributions

- What is the maximum speed of your robot?
- You weigh $8.8 \mathrm{ft} / \mathrm{s}, 6.6 \mathrm{ft} / \mathrm{s}, 8.33 \mathrm{ft} / \mathrm{s}$, but what is the actual value?
- Frequentist Statistics
- Mean: $\mu=(8.8+6.6+8.33) / 3=7.91$
- Variance: $\sigma^{2}=\left((8.8-7.91)^{2}+(6.6-7.92)^{2}+(8.33-7.91)^{2}\right) /(3-1)=1.35$
- Standard deviation: $\sigma=$ sqrt $\left(\sigma^{2}\right)=1.16$
- Standard error: $\sigma / \operatorname{sqrt}(3)=0.67$
- Bayesian Statistics
- Probably 7.91ft/s...

Probability Distributions

- Use Bayes theorem
- Instead of A and B

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

- Substitute "s" for the actual speed
- Substitute "m" for the measurements
- $P(s)$ is our prior
- $\quad P(m \mid s)$ is the likelihood associated with those measurements
- $P(s \mid m)$ is what we believe about the speed given those measurements
- $\quad P(m)$ is the marginal likelihood
- Procedure:
- Start with a belief
- Update it
- End up with a new belief!

Probability Distributions

- Use Bayes theorem

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

- Start by assuming nothing
- $\quad P(s)=$ uniform
- $\quad P(s \mid m)=P(m \mid s)^{*} c_{1} / c_{2}$
- \quad Simplified: $P(s \mid m)=P(m \mid s)$
- Guess! What if the actual max speed is $11 \mathrm{ft} / \mathrm{s}$?
- $\quad \mathrm{P}(\mathrm{s}=11 \mid \mathrm{m}=[6.6,8.33,8.8])=\mathrm{P}(\mathrm{m}=[6.6,8.33,8.8] \mid \mathrm{s}=11)$
- $\quad P(m=6.6 \mid \mathrm{s}=11) * P(\mathrm{~m}=8.33 \mid \mathrm{s}=11) * P(\mathrm{~m}=8.8 \mid \mathrm{s}=11)$

Probability Distributions

- Use Bayes theorem

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

- Start by assuming nothing
- $\quad P(s)=$ uniform
- $P(s \mid m)=P(m \mid s)^{*} c_{1} / c_{2}$
- Simplified: $P(s \mid m)=P(m \mid s)$
- Example, what if the actual max speed is $11 \mathrm{ft} / \mathrm{s}$?
- $\quad P(s=11 \mid m=[6.6,8.33,8.8])=P(m=[6.6,8.33,8.8] \mid s=11)$
- $P(m=6.6 \mid \mathrm{s}=11) * P(\mathrm{~m}=8.33 \mid \mathrm{s}=11) * P(\mathrm{~m}=8.8 \mid \mathrm{s}=11)$

Probability Distributions

- Use Bayes theorem
- Add a prior!

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

- You know yesterday's speed, and you can kind of judge the current speed by eye
- Prior: $7.91 \mathrm{ft} / \mathrm{s} \pm 1.16 \mathrm{ft} / \mathrm{s}$
- $\quad P(s=11 \mid m=[6.6,8.33,8.8])=P(m=[6.6,8.33,8.8] \mid s=11) * P(s=11)$

$$
=P(m=6.6 \mid s=11) * P(s=11) * P(m=8.33 \mid s=11) * P(s=11) * P(m=8.8 \mid s=11) * P(s=11)
$$

Repeat the process!

Spen loop max speed [tt/s]

Probability Distributions

- Use Bayes theorem
- Add a prior!

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

- You know yesterday's speed, and you can kind of judge the current speed by eye
- Prior: $7.91 \mathrm{ft} / \mathrm{s} \pm 1.16 \mathrm{ft} / \mathrm{s}$
- $\quad P(s=11 \mid m=[6.6,8.33,8.8])=P(m=[6.6,8.33,8.8] \mid s=11) * P(s=11)$

$$
=P(m=6.6 \mid s=11) * P(s=11) * P(m=8.33 \mid s=11) * P(s=11) * P(m=8.8 \mid s=11) * P(s=11)
$$

Repeat the process!
Add everything up to get the posterior distribution

Maximum A Posteriori (MAP)

Probability Distributions

- Always believe the impossible, at least a little bit!
- Leave room for believing the unlikely. Leave a non-zero probability unless you are absolutely certain.
- "It ain't what you don't know that gets you into trouble. It's what you know for sure that just ain't so." -Mark Twain
- "When you have excluded the impossible, whatever remains, however improbable, must be true. " Sherlock Holmes (Sir Arthur Conan Doyle)

Alice's adventures in wonderland

References

- Probabilistic Robotics, book by Dieter Fox, Sebastian Thrun, and Wolfram Burgard
- How Bayes Theorem works (Youtube), by Brandon Rohrer

