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• Probability in Robotics:  

• The Why 

• The How

• Robot Environment Model

• Markov Processes

• Bayes Filter

Lecture Outline
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• A Random variable is described informally as a variable whose values depend on the 

outcomes of a random phenomenon. 

• It is usually denoted by capital letters. It is a function 

𝑋 ∶ 𝛺 → ℝ

• Here, Ω is the sample space i.e. the set of all possible outcomes and ℝ is the set of all 

real numbers

Random Variable
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• Let X denote a random variable and x denote a specific event that X might take on

• To denote the probability that the random variable X has value x
𝑃(𝑋 = 𝑥) 𝑜𝑟 𝑝(𝑥)

• Probabilities sum to one

෍

𝑥

𝑃(𝑋 = 𝑥) = 1

• Probabilities are always non-negative, that is,
𝑃(𝑋 = 𝑥) ≥ 0

Axioms of Probability
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• The joint distribution of two random variables X and Y is given by

𝑝(𝑥, 𝑦) = 𝑃(𝑋 = 𝑥 𝑎𝑛𝑑 𝑌 = 𝑦)

This expression describes the probability of the event that the random variable X takes on the 

value x and that Y takes on the value y

• Suppose we already know that Y ’s value is y, and we would like to know the probability that X’s 

value is x conditioned on that fact. 

• Such a probability is known as the conditional probability and is given by

𝑝(𝑥 | 𝑦) =
𝑝(𝑥, 𝑦)

𝑝(𝑦)

[Also known as the general product rule of probability]

Joint and Conditional Probability
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• Following the axioms of probability and conditional probability, we have the theorem of 

total probability that gives:

𝑝(𝑥) = ෍
𝑦
𝑝(𝑥 | 𝑦) 𝑝(𝑦)

• Such a probability is known as the marginal probability

Marginal Probability
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• Independence is a fundamental notion in probability theory

• Two events are independent if the occurrence of one does not affect the probability of 
occurrence of the other

• Let random variables X and Y take on the value x and y, respectively 

• If X and Y are independent, then

𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑝 𝑦

𝑝(𝑥|𝑦) = 𝑝(𝑥) 𝑎𝑛𝑑 𝑝(𝑦|𝑥) = 𝑝(𝑦)

Independence
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• If X and Y are conditional independent given Z = z, then

𝑝 𝑥, 𝑦 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑦 𝑧

𝑝(𝑥|𝑧, 𝑦) = 𝑝(𝑥|𝑧) 𝑎𝑛𝑑 𝑝(𝑦|𝑧, 𝑥) = 𝑝(𝑦|𝑧)

Conditional Independence
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Bayes Theorem

likelihood prior

posterior

𝑝 𝑥 𝑦 =
𝑝 𝑦 𝑥 𝑝(𝑥)

𝑝(𝑦)
marginal likelihood

(constant) 
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• If x is a quantity that we would like to infer from 
y, then the probability p(x) will be referred to as 
prior probability distribution, and y is called the 
data (e.g., a sensor measurement)

• p(x) summarizes the knowledge we have 
regarding X prior to incorporating the data y

• The probability p(x|y), computed after 
incorporating the data, is called the posterior 
probability distribution over X

• Bayes Theorem provides a convenient way to 
compute the posterior probability p(x|y) using 
the “inverse” conditional probability p(y|x) and 
the prior probability p(x)

Bayes Theorem
likelihood prior

posterior

𝑝 𝑥 𝑦 =
𝑝 𝑦 𝑥 𝑝(𝑥)

𝑝(𝑦)

11



ECE4960 Fast Robots

• If x is a quantity that we would like to infer from 
y, then the probability p(x) will be referred to as 
prior probability distribution, and y is called the 
data (e.g., a sensor measurement)

• p(x) summarizes the knowledge we have 
regarding X prior to incorporating the data y

• The probability p(x|y), computed after 
incorporating the data, is called the posterior 
probability distribution over X

• Bayes Theorem provides a convenient way to 
compute the posterior probability p(x|y) using 
the “inverse” conditional probability p(y|x) and 
the prior probability p(x)

Bayes Theorem

𝑝 𝑥 𝑦 =
𝑝 𝑦 𝑥 𝑝(𝑥)

𝑝(𝑦)

𝑝 𝑥 𝑦 =
𝑝 𝑦 𝑥 𝑝(𝑥)

σ𝑥′𝑝 𝑦 𝑥′ 𝑝(𝑥′)
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• If x is a quantity that we would like to infer from 
y, then the probability p(x) will be referred to as 
prior probability distribution, and y is called the 
data (e.g., a sensor measurement)

• p(x) summarizes the knowledge we have 
regarding X prior to incorporating the data y

• The probability p(x|y), computed after 
incorporating the data, is called the posterior 
probability distribution over X

• Bayes Theorem provides a convenient way to 
compute the posterior probability p(x|y) using 
the “inverse” conditional probability p(y|x) and 
the prior probability p(x)

Bayes Theorem

likelihood priorposterior

𝑝 𝑥 𝑦 =
𝑝 𝑦 𝑥 𝑝(𝑥)

𝑝(𝑦)

𝜂 is the normalizing constant 

𝑝 𝑥 𝑦 =
𝑝 𝑦 𝑥 𝑝(𝑥)

σ𝑥′𝑝 𝑦 𝑥′ 𝑝(𝑥′)

𝑝 𝑥 𝑦 = 𝜂 𝑝 𝑦 𝑥 𝑝(𝑥)
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THE WHY
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• Uncertainty is inherent in the world. Resistance in futile! 

• Five Major factors

• Environment

• Robot actions

• Sensors

• Models

• Computation

• Traditionally, such uncertainty has mostly been ignored in robotics. 

• As robots are moving away from factory floors into increasingly unstructured 
environments, the ability to cope with uncertainty is critical for building successful 
robots.

Uncertainty is Inherent
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1. Environments

16
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• Physical worlds are inherently unpredictable

• Uncertainty in well-structured environments such assembly lines is usually small

• Environments such as highways and private homes are highly dynamic and 

unpredictable.

1. Environments
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• Sensors are inherently limited in what they can 
perceive 

• Limitations arise from two primary factors. 

• Range and resolution of a sensor is subject to 
physical laws. 
• For example, cameras can’t see through walls, and 

even within the perceptual range the spatial 
resolution of camera images is limited.

• Noise
• perturbs sensor measurements in unpredictable 

ways

• limits the information that can be extracted from 
sensor measurements.

2. Sensors

18

Typical data obtained from a laser-range sensor 
in an office environment for a “true” range of 

300 cm and a maximum range of 500 cm
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• Robot actuation involves motors that are, at least to some extent, unpredictable, due 

effects like control noise and wear-and-tear

• Low-cost mobile robots, can be extremely inaccurate

• Some actuators, such as heavy-duty industrial robot arms, are quite accurate, but much 

more expensive

3. Robots
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• Models are inherently inaccurate

• Models are abstractions of the real world 

• They only partially model the underlying physical processes of the robot and its 

environment

• Model errors are a source of uncertainty that has largely been ignored in robotics, 

despite the fact that most robotic models used in state-or-the-art robotics systems are 

rather crude

4. Models
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• Robots are real-time systems, which limits the amount of computation that can be 

carried out

• Many state-of-the-art algorithms are approximate, achieving timely response through 

sacrificing accuracy

5. Computation
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“A robot that carries a notion of its own uncertainty and that acts accordingly

is superior to one that does not.” 

- Probabilistic Robotics by Thrun, Burgard, Fox

• Probabilistic Approaches in contrast to traditional approaches such as model-based 
motion planning techniques or reactive behavior-based approaches:

• tend to be more robust to sensor and model limitations

• weaker requirements on the accuracy of the robot’s models

• In fact, they are the only known working solutions to hard robotic estimation problems, 
such as the localization problem

Probabilistic Approaches
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• Shakey the Robot was the first general-purpose mobile 
robot to be able to reason about its own actions

• Developed from approximately 1966-1972 and funded by 
DARPA

• It could 

• travel from one location to another

• turn the light switches on and off

• open and close the doors 

• climb up and down rigid objects

• push movable objects around

• Interesting results: A* Search Algorithm and Hough 
Transform

Probabilistic Robotics

23

Shakey the Robot
1972
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+ Explicitly represent the uncertainty using probability theory

+ Can accommodate inaccurate models

+ Can accommodate imperfect sensors

+ Robust in real-world applications

+ Best known approach to many hard robotics problems

- Computationally demanding

- Need to Approximate

- False assumptions

The WHY
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The dress is a photograph that became 
a viral internet sensation on 26 February 
2015, when viewers disagreed over 
whether the dress pictured was colored 
black and royal blue, or white and gold.

Poll

25

Where does the uncertainty arise from?

a. Environment

b. Sensors

c. Models
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The dress is a photograph that became 
a viral internet sensation on 26 February 
2015, when viewers disagreed over 
whether the dress pictured was colored 
black and royal blue, or white and gold.

Poll
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Digitally remastered
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Poll
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• Two ways in which the photograph 
of The dress may be perceived: 

• blue and black under a yellow-tinted 
illumination (left figure) or

• white and gold under a blue-tinted 
illumination (right figure)



Probability for Robotics
THE HOW
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Robot-Environment Model
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• Two fundamental types of interaction between a robot and its environment:

− Sensor Measurements/Observations 

− Control Actions

Robot-Environment Interaction

30

Environment

Robot

Act Sense
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• The environment is a dynamical system that possesses its own internal state

• The robot can acquire information about its environment using its sensors

• But sensors are noisy and cannot sense all aspects of the environment directly

• The robot maintains an internal belief with regards to the actual state of the 

environment

• The robot can influence its environment through its actions,

• But actions are unpredictable

• Each control state affects the environment state and the robot’s internal belief regards 

to this state

Robot-Environment Interaction

31



ECE4960 Fast Robots

• The model helps us express a robot-environment interaction using probability

• Robot environment interactions are typically modeled as a discrete time system

• The state at time t will be denoted by as xt

• A sensor measurement at time t will be denoted as zt

• A control action will be denoted by ut, which carries information about the change of 

the robot state in the time interval (t-1:t] i.e. ut indices a transition from state xt-1 to xt

Robot-Environment Model

32

Conventions as per Siegwart, R., Nourbakhsh, I.R. and Scaramuzza, D., 2011. 

Introduction to autonomous mobile robots. MIT press.
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• For no particular reason, we assume the robot executes a control action ut first and then 

takes a measurement zt

• There is only one control action per time step t, and include as legal action “do-

nothing”

• There is only one measurement per time step t

• Shorthand Notation: xt1:t2 = xt1 , xt1+1 , xt1+2  , . . . ,  xt2

Robot-Environment Model
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• The state of the robot is the collection of all aspects of the robot and its environment 
that can impact the future

• The state includes:

• Robot Specific:
- Pose, Velocity, Sensor status(whether they are working or not), etc.

• Environment Specific:

- Variables that are static, such as the location of walls in (most) buildings (static state)

- Variable that are dynamic, such as the whereabouts of people in the vicinity of the robot 
(dynamic state)

• The robot state will be denoted as x, although the specific variables included in x is 
context-specific

• The state at time t will be denoted by as xt

Robot State
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Some typical state variables used:

- Robot pose, for a mobile robot, which comprises of its location and orientation 

relative to a global coordinate system

- Robot configuration, for a robot manipulator, which comprises of the configuration 

of the robot’s actuators

- Robot velocity and velocities of its joints

- Location and features of surrounding objects in the environment: An object may be 

a tree, a wall, or a pixel within a larger surface. Features of such objects may be their 

visual appearance such as color, texture , etc.

Robot State (Examples)
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• The robot perceives its environment through sensors and the result of a perceptual 

interaction will be termed as measurement/observation

• A measurement at time t will be denoted as zt

• Provides information about the environment’s state, and hence tends to increase the 

robot’s knowledge

Sensor Measurements/Observations 

36
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• They change the state of the world. 

• Ex: robot motion, manipulation, etc.

• A control action will be denoted by ut , which carries information about the change of 

the robot state in the time interval (t-1:t]

• Tends to induce a loss of knowledge due to inherent noise in robot actuation and 

stochasticity of robot environments

Control Actions

37
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• The evolution of state and measurements is governed by probabilistic laws

• We are interested in generative laws concerning the evolution of the:

• State: How is xt generated stochastically?

• Measurements: How is zt generated stochastically?

Probabilistic Generative Laws

38



ECE4960 Fast Robots

• xt is generated stochastically from the state xt-1

• xt depends on x0:t-1, z1:t-1 and u1:t

p(xt | x0:t-1, z1:t-1, u1:t)

State Generation

39
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The Markov assumption postulates that past and 
future data are independent if one knows the 
current state

• It is assumed that future states depend only on 

the current state, not on the events that occurred 

before it 

• A stochastic model/process that obeys the Markov 

assumption is a Markov model

• Plays a fundamental role in probabilistic robotics

Markov Assumption

41

Andrey Markov (1856–1922) was a 
Russian mathematician best known 
for his work on stochastic processes 
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The Markov assumption postulates that past and future data are independent if one 
knows the current state

• The knowledge of past states, measurements or controls carry no additional 

information that would help us predict the future more accurately

• This does not mean the future is a deterministic function of the current state

• Hence, if we somehow model the state using the Markov assumption, we can 

recursively estimate the robot state xt from the previous state xt-1 , measurement data zt

and control input ut

Markov Assumption

42
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• A famous Markov chain is the so-called "drunkard's walk“

• A random walk on the number line where, at each step, the position may change by +1 

or −1 with equal probability

• From any position there are two possible transitions, to the next or previous integer

• The transition probabilities depend only on the current position, not on the manner in 

which the position was reached. 

Markov Process 1

43
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• A famous Markov chain is the so-called "drunkard's walk“

• A random walk on the number line where, at each step, the position may change by +1 

or −1 with equal probability

• From any position there are two possible transitions, to the next or previous integer

• The transition probabilities depend only on the current position, not on the manner in 

which the position was reached.

• For example, the transition probabilities from 5 to 4 and 5 to 6 are both 0.5, and all 

other transition probabilities from 5 are 0. 

• These probabilities are independent of whether the system was previously in 4 or 6.

Markov Process 1
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• A coin purse contains five quarters (each 
worth 25¢), five dimes (each worth 10¢), 
and five nickels (each worth 5¢). Coins are 
randomly drawn, one by one, from the 
purse and are set on a table. 

• If Xn represents the total value of the coins 
set on the table after n draws,  then the 
sequence { 𝑋𝑛∶ 𝑛 𝜖 ℕ } represents a 
stochastic process

• Suppose that in the first six draws, all 5 
nickels and 1 quarter are drawn. 

𝑋6 ∶ $0.50

Markov Process 2

45

DISCUSSION

1. Can you say, with a probability of 1, what 
the value of 𝑋7 will be?

a) For example, I can say P( 𝑋7 ≥ 0.55 )
= 1. Can you do better i.e with a
higher value?

b) Can you draw a nickel in the 7th draw?

2. Is this is a Markov process? 

3. If not, how can you model this scenario 
into a Markov process by somehow 
changing the definition of 𝑋𝑛 ?
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• A coin purse contains five quarters (each worth 25¢), five dimes (each worth 10¢), and five 
nickels (each worth 5¢). Coins are randomly drawn , one by one, from the purse and are set on a 
table. 

• If Xn represents the total value of the coins set on the table after n draws,  then the sequence 
{ 𝑋𝑛∶ 𝑛 𝜖 ℕ } is not a Markov process.

• Suppose that in the first six draws, all 5 nickels and 1 quarter are drawn. 
𝑋6 ∶ $0.50

• If we know not just X6, but the earlier values as well, then we can determine which coins have 
been drawn, and we know that the next coin will not be a nickel; so we can determine that 
𝑋7 ≥ 0.60 with probability 1

• But if we do not know the earlier values, then based only on the value X6 we might guess that 
we had drawn four dimes and two nickels, in which case it would certainly be possible to draw 
another nickel next. Thus, our guesses about X7 are impacted by our knowledge of values prior 
to X6.

Markov Process 2
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• How can I model this scenario into a Markov process by somehow changing the definition of Xn?

• We could define Xn to represent the count of the various coin types on the table. 

• For instance, Xn = [1, 0, 5] could be defined to represent the state where there is one quarter, zero 

dimes, and five nickels on the table after 6 one-by-one draws. 

• Suppose that the first draw results in state X1 =  [0, 1, 0]. The probability of achieving X_{2} now 

depends on X1; for example, the state X2 = [1, 0, 1] is not possible. 

• After the second draw, the third draw depends on which coins have so far been drawn, but no 

longer only on the coins that were drawn for the first state

• In this way, the likelihood of the state Xn depends exclusively on the outcome of Xn-1

• This new model would be represented by 216 possible states (6x6x6 states, since each of the three 

coin types could have zero to five coins on the table by the end of the 6 draws)

Markov Process 2
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Robot-Environment Model
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• xt is generated stochastically from the state xt-1

• xt depends on x0:t-1, z1:t-1 and u1:t

p(xt | x0:t-1, z1:t-1, u1:t)

• If state xt is modeled under the Markov Assumption, then

p(xt | x0:t-1, z1:t-1, u1:t) = p(xt | xt-1,ut) 

(conditional independence) 

Knowledge of only the previous state xt-1 and control ut is sufficient to 
predict xt

State Generative Model
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• Similarly, the process by which measurements are generated are of importance

p(zt|x0:t, z1:t-1, u1:t)

• If xt conforms to the Markov Assumption, then

p(zt|x0:t, z1:t-1, u1:t) = p(zt|xt)

(conditional independence)

• The state xt is sufficient to predict the (potentially noisy) measurements

Knowledge of any other variable, such as past measurements, controls, 
or even past states, is irrelevant under the Markov Assumption 

Measurement Generative Model
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Robot-Environment Model
+

Markov Assumption
+

Bayes Theorem 
= 

Bayes Filter
51
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