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In the last episode…
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• Two fundamental types of interaction between a robot and its environment:

− Sensor Measurements/Observations 

− Control Actions

Robot-Environment Interaction
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Environment

Robot

Act Sense



ECE4960 Fast Robots

• The model helps us express a robot-environment interaction using probability

• Robot environment interactions are typically modeled as a discrete time system

• The state at time t will be denoted by as xt

• A sensor measurement at time t will be denoted as zt

• Provides information about the environment’s state, and hence tends to increase the 

robot’s knowledge

Robot-Environment Model
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Conventions as per Siegwart, R., Nourbakhsh, I.R. and Scaramuzza, D., 2011. 

Introduction to autonomous mobile robots. MIT press.
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• A control action will be denoted by ut, which carries information about the change of the robot 

state in the time interval (t-1:t] i.e. ut indices a transition from state xt-1 to xt

• Tends to induce a loss of knowledge due to inherent noise in robot actuation and 

stochasticity of robot environments

• For no particular reason, we assume the robot executes a control action ut first and then takes a 

measurement zt

• There is only one control action per time step t, and include as legal action “do-nothing ”

• There is only one measurement per time step t

Robot-Environment Model
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• The evolution of state and measurements is governed by probabilistic laws

• We are interested in generative laws concerning the evolution of the:

• State: How is xt generated stochastically?

• Measurements: How is zt generated stochastically?

Probabilistic Generative Laws

7
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The Markov assumption postulates that past and future data are independent if one knows 
the current state

• It is assumed that future states depend only on the current state, not on the events that 
occurred before it 

• The knowledge of past states, measurements or controls carry no additional information 
that would help us predict the future more accurately

• Hence, if we somehow model the state using the Markov assumption, we can recursively 
estimate the robot state xt from the previous state xt-1 , measurement data zt and control 
input ut

• This does not mean the future is a deterministic function of the current state

Markov Assumption

8
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• If state xt is modeled under the Markov Assumption, then

p(xt | x0:t-1, z1:t-1, u1:t) = p(xt | xt-1,ut) 

(conditional independence) 

Knowledge of only the previous state xt-1 and control ut is sufficient to 
predict xt

State Generative Model
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• If xt conforms to the Markov Assumption, then

p(zt|x0:t, z1:t-1, u1:t) = p(zt|xt)

(conditional independence)

• The state xt is sufficient to predict the (potentially noisy) measurements

Knowledge of any other variable, such as past measurements, 
controls, or even past states, is irrelevant under the Markov 

Assumption 

Measurement Generative Model
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Robot-Environment Model
+

Markov Assumption
+

Bayes Theorem 
= 

Bayes Filter
11
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• A robot maintain an internal representation of itself and the environment

• Probabilistic robotics represents beliefs through posterior conditional probability 
distributions i.e. probability distributions over state variables conditioned on available 
data

• The belief of a robot is the posterior distribution over the state of the environment, 
given all past sensor measurements and all past controls

• Belief over a state variable 𝑥𝑡 is denoted by 𝑏𝑒𝑙 𝑥𝑡 which is an abbreviation for
𝑏𝑒𝑙 𝑥𝑡 = 𝑝(𝑥𝑡|𝑧1:𝑡, 𝑢1:𝑡)

• Occasionally it prove useful in our probabilistic algorithms to define a (prior) belief
before incorporating the latest measurement 𝑧𝑡

𝑏𝑒𝑙 𝑥𝑡 = 𝑝(𝑥𝑡|𝑧1:𝑡−1, 𝑢1:𝑡)

Robot Belief

12
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• It is a recursive algorithm 
that calculates the belief 
distribution from 
measurements and control 
data

• The pseudo algorithm 
depicts one iteration of the 
Bayes Filter algorithm 

Bayes Filter

xt-1

1. 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐁𝐚𝐲𝐞𝐬_𝐅𝐢𝐥𝐭𝐞𝐫 𝑏𝑒𝑙 𝑥𝑡−1 , 𝑢𝑡 , 𝑧𝑡 :

2. for all 𝑥𝑡 do

3. 𝑏𝑒𝑙 𝑥𝑡 = σ𝑥𝑡−1
𝑝(𝑥𝑡|𝑢𝑡, 𝑥𝑡−1) 𝑏𝑒𝑙 𝑥𝑡−1

4. 𝑏𝑒𝑙 𝑥𝑡 = 𝜂 𝑝(𝑧𝑡|𝑥𝑡) 𝑏𝑒𝑙 𝑥𝑡

5. endfor

6. return 𝑏𝑒𝑙 𝑥𝑡

13
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Bayes Filter

xt-1

1. 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐁𝐚𝐲𝐞𝐬_𝐅𝐢𝐥𝐭𝐞𝐫 𝑏𝑒𝑙 𝑥𝑡−1 , 𝑢𝑡 , 𝑧𝑡 :

2. for all 𝑥𝑡 do

3. 𝑏𝑒𝑙 𝑥𝑡 = σ𝑥𝑡−1
𝑝(𝑥𝑡|𝑢𝑡, 𝑥𝑡−1) 𝑏𝑒𝑙 𝑥𝑡−1

4. 𝑏𝑒𝑙 𝑥𝑡 = 𝜂 𝑝(𝑧𝑡|𝑥𝑡) 𝑏𝑒𝑙 𝑥𝑡

5. endfor

6. return 𝑏𝑒𝑙 𝑥𝑡

[ Prediction Step ]

[ Update/Measurement Step ]

Transition Probability / Action Model

Measurement Probability / Sensor Model

14



ECE4960 Fast Robots

• Its input is the belief 𝑏𝑒𝑙 𝑥𝑡−1 at time 𝑡 − 1 along with the most recent control 
input ut and the most recent measurement 𝑧𝑡

• Its output is the belief 𝑏𝑒𝑙 𝑥𝑡 at time 𝑡

• Control/Prediction Step:

− In line 3, it process the control 𝑢𝑡 by calculating a belief over the state 𝑥𝑡 based 
on the belief over state 𝑥𝑡−1

• Update/Measurement Step:

− In line 4, the posterior belief 𝑏𝑒𝑙 𝑥𝑡 is calculated based on the prior belief  

𝑏𝑒𝑙 𝑥𝑡 and the probability that the measurement 𝑧𝑡 may have been observed

• This is done for each hypothetical posterior state 𝑥𝑡

Bayes Filter

15
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● 𝑝(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡 )

− It is known as the state transition probability 

− It specifies how the robot state evolves over time as a function of robot controls 
ut

● 𝑝(𝑧𝑡|𝑥𝑡)

− It is known as the measurement probability

− It specifies how the measurements are generated from the robot state xt

− Informally, you may think of measurements as noisy projections of the state

• Remember that these predictions are stochastic and not deterministic

Dynamical Stochastic Model
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• To compute the posterior belief recursively, the algorithm requires an initial belief 
𝑏𝑒𝑙 𝑥0 at time 𝑡 = 0

• If we know the initial state with absolute certainty, we can initialize a point mass 
distribution that centers all probability mass on the correct value of 𝑥0 and assign zero 
everywhere else

• If we are entirely ignorant of the initial state, we can initialize it with a uniform 
probability distribution over all the possible states

Bayes Filter - Initial Conditions

17
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● p(xt | xt-1, ut) and  p(zt | xt) together describe the dynamical stochastic system of the 
robot and its environment

• Such a generative model is also known as a Hidden Markov Model (HMM) or 
Dynamic Bayes Network (DBN)

Dynamical Stochastic Model

18

xt 

ut 

zt

xt+1 

ut+1 

z +1

xt-1 

ut-1 

zt-1 

Dynamic Bayes Network that characterizes the evolution of controls, states, and measurements.



Bayes Filter 
Example 1

19



Bayes Filter - Example 1 (1)

• A robot can “observe” a door through its sensor and can 
interact with it by “pushing”

• The door may be in one of two states: open or close

• The sensors and the actuators on the robot are noisy

• The robot can either push or do_nothing at any given time

• The probability that the robot can sense a open door is 0.6

• The probability that the robot can sense a closed door is 0.8

• After a push action, probability that a door is open if it was 
previously open is 1

• After a push action, probability that a door is open if it was 
previously closed is 0.8

• If the robot does nothing, the door continues to be in the 
previous state

20
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Initial Conditions

𝑏𝑒𝑙(𝑋0 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑) = 𝑏𝑒𝑙(𝑋0 = 𝑖𝑠_𝑜𝑝𝑒𝑛) = 0.5

Bayes Filter - Example 1 (2)

Measurement Probability

𝑝 𝑍𝑡 = 𝑠𝑒𝑛𝑠𝑒_𝑐𝑙𝑜𝑠𝑒𝑑 𝑋𝑡 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑) = 0.8

𝑝 𝑍𝑡 = 𝑠𝑒𝑛𝑠𝑒_𝑜𝑝𝑒𝑛 𝑋𝑡 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑) = 0.2

𝑝 𝑍𝑡 = 𝑠𝑒𝑛𝑠𝑒_𝑐𝑙𝑜𝑠𝑒𝑑 𝑋𝑡 = 𝑖𝑠_𝑜𝑝𝑒𝑛) = 0.4

𝑝 𝑍𝑡 = 𝑠𝑒𝑛𝑠𝑒_𝑜𝑝𝑒𝑛 𝑋𝑡 = 𝑖𝑠_𝑜𝑝𝑒𝑛) = 0.6

Control Action/Transition Probability

𝑝(𝑋𝑡 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑|𝑈𝑡 = 𝑑𝑜_𝑛𝑜𝑡ℎ𝑖𝑛𝑔, 𝑋𝑡−1 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑) = 1

𝑝(𝑋𝑡 = 𝑖𝑠_𝑜𝑝𝑒𝑛 |𝑈𝑡 = 𝑑𝑜_𝑛𝑜𝑡ℎ𝑖𝑛𝑔, 𝑋𝑡−1 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑) = 0

𝑝(𝑋𝑡 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑 |𝑈𝑡 = 𝑑𝑜_𝑛𝑜𝑡ℎ𝑖𝑛𝑔, 𝑋𝑡−1 = 𝑖𝑠_𝑜𝑝𝑒𝑛) = 0

𝑝(𝑋𝑡 = 𝑖𝑠_𝑜𝑝𝑒𝑛 |𝑈𝑡 = 𝑑𝑜_𝑛𝑜𝑡ℎ𝑖𝑛𝑔, 𝑋𝑡−1 = 𝑖𝑠_𝑜𝑝𝑒𝑛) = 1

𝑝(𝑋𝑡 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑|𝑈𝑡 = 𝑝𝑢𝑠ℎ, 𝑋𝑡−1 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑) = 0.2

𝑝(𝑋𝑡 = 𝑖𝑠_𝑜𝑝𝑒𝑛 |𝑈𝑡 = 𝑝𝑢𝑠ℎ, 𝑋𝑡−1 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑) = 0.8

𝑝 𝑋𝑡 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑 𝑈𝑡 = 𝑝𝑢𝑠ℎ, 𝑋𝑡−1 = 𝑖𝑠_𝑜𝑝𝑒𝑛) = 0

𝑝 𝑋𝑡 = 𝑖𝑠_𝑜𝑝𝑒𝑛 𝑈𝑡 = 𝑝𝑢𝑠ℎ, 𝑋𝑡−1 = 𝑖𝑠_𝑜𝑝𝑒𝑛) = 1
21



𝑢1 = 𝑑𝑜_𝑛𝑜𝑡ℎ𝑖𝑛𝑔 𝑎𝑛𝑑 𝑧1 = 𝑠𝑒𝑛𝑠𝑒_𝑜𝑝𝑒𝑛

Incorporating action

𝑏𝑒𝑙 𝑥1 = 

𝑥0

𝑝 𝑥1 𝑢1, 𝑥0 𝑏𝑒𝑙 𝑥0

= 𝑝(𝑥1|𝑈1 = 𝑑𝑜_𝑛𝑜𝑡ℎ𝑖𝑛𝑔, 𝑋0 = 𝑖𝑠_𝑜𝑝𝑒𝑛) 𝑏𝑒𝑙(𝑋0 = 𝑖𝑠_𝑜𝑝𝑒𝑛)

+ 𝑝(𝑥1|𝑈1 = 𝑑𝑜_𝑛𝑜𝑡ℎ𝑖𝑛𝑔, 𝑋0 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑) 𝑏𝑒𝑙(𝑋0 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑)

We can now substitute the two possible values for the state variable 𝑋1. 

For the hypothesis 𝑋1 = 𝑖𝑠_𝑜𝑝𝑒𝑛, we obtain

𝑏𝑒𝑙(𝑋1 = 𝑖𝑠_𝑜𝑝𝑒𝑛) = 𝑝(𝑋1 = 𝑖𝑠_𝑜𝑝𝑒𝑛|𝑈1 = 𝑑𝑜_𝑛𝑜𝑡ℎ𝑖𝑛𝑔, 𝑋0 = 𝑖𝑠_𝑜𝑝𝑒𝑛) 𝑏𝑒𝑙(𝑋0 = 𝑖𝑠_𝑜𝑝𝑒𝑛)

+ 𝑝(𝑋1 = 𝑖𝑠_𝑜𝑝𝑒𝑛|𝑈1 = 𝑑𝑜_𝑛𝑜𝑡ℎ𝑖𝑛𝑔, 𝑋0 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑) 𝑏𝑒𝑙(𝑋0 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑)

= 1 × 0.5 + 0 × 0.5 = 0.5

Bayes Filter - Example 1 (3)
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𝑢1 = 𝑑𝑜_𝑛𝑜𝑡ℎ𝑖𝑛𝑔 𝑎𝑛𝑑 𝑧1 = 𝑠𝑒𝑛𝑠𝑒_𝑜𝑝𝑒𝑛

Incorporating action

𝑏𝑒𝑙 𝑥1 = 

𝑥0

𝑝 𝑥1 𝑢1, 𝑥0 𝑏𝑒𝑙 𝑥0

= 𝑝(𝑥1|𝑈1 = 𝑑𝑜_𝑛𝑜𝑡ℎ𝑖𝑛𝑔, 𝑋0 = 𝑖𝑠_𝑜𝑝𝑒𝑛) 𝑏𝑒𝑙(𝑋0 = 𝑖𝑠_𝑜𝑝𝑒𝑛)

+ 𝑝(𝑥1|𝑈1 = 𝑑𝑜_𝑛𝑜𝑡ℎ𝑖𝑛𝑔, 𝑋0 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑) 𝑏𝑒𝑙(𝑋0 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑)

We can now substitute the two possible values for the state variable 𝑋1. 

For the hypothesis 𝑋1 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑, we obtain

𝑏𝑒𝑙(𝑋1 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑) = 𝑝(𝑋1 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑|𝑈1 = 𝑑𝑜_𝑛𝑜𝑡ℎ𝑖𝑛𝑔, 𝑋0 = 𝑖𝑠_𝑜𝑝𝑒𝑛) 𝑏𝑒𝑙(𝑋0 = 𝑖𝑠_𝑜𝑝𝑒𝑛)

+ 𝑝(𝑋1 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑|𝑈1 = 𝑑𝑜_𝑛𝑜𝑡ℎ𝑖𝑛𝑔, 𝑋0 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑) 𝑏𝑒𝑙(𝑋0 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑)

= 0 × 0.5 + 1 × 0.5 = 0.5

Bayes Filter - Example 1 (4)
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𝑢1 = 𝑑𝑜_𝑛𝑜𝑡ℎ𝑖𝑛𝑔 𝑎𝑛𝑑 𝑧1 = 𝑠𝑒𝑛𝑠𝑒_𝑜𝑝𝑒𝑛

Incorporating measurement

𝑏𝑒𝑙 𝑥1 = 𝜂 𝑝 𝑍1 = 𝑠𝑒𝑛𝑠𝑒_𝑜𝑝𝑒𝑛 𝑥1 𝑏𝑒𝑙 𝑥1

For two possible cases, 𝑋1 = 𝑖𝑠_𝑜𝑝𝑒𝑛 and 𝑋1 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑 , we get

𝑏𝑒𝑙 𝑋1 = 𝑖𝑠_𝑜𝑝𝑒𝑛 = 𝜂 𝑝(𝑍1 = 𝑠𝑒𝑛𝑠𝑒_𝑜𝑝𝑒𝑛 |𝑋1 = 𝑖𝑠_𝑜𝑝𝑒𝑛) 𝑏𝑒𝑙(𝑋1 = 𝑖𝑠_𝑜𝑝𝑒𝑛)

= 𝜂 × 0.6 × 0.5 = 𝜂 0.3

𝑏𝑒𝑙 𝑋1 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑 = 𝜂 𝑝(𝑍1 = 𝑠𝑒𝑛𝑠𝑒_𝑜𝑝𝑒𝑛 |𝑋1 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑) 𝑏𝑒𝑙(𝑋1 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑)

= 𝜂 × 0.2 × 0.5 = 𝜂 0.1

𝑏𝑒𝑙 𝑋1 = 𝑖𝑠_𝑜𝑝𝑒𝑛 = 0.5

𝑏𝑒𝑙 𝑋1 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑 = 0.5

24

Bayes Filter - Example 1 (5)
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𝑢1 = 𝑑𝑜_𝑛𝑜𝑡ℎ𝑖𝑛𝑔 𝑎𝑛𝑑 𝑧1 = 𝑠𝑒𝑛𝑠𝑒_𝑜𝑝𝑒𝑛

Incorporating measurement

The normalizer η is now calculated as follows:

η = (0.3 + 0.1)−1 = 2.5

𝑏𝑒𝑙 𝑋1 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑 = 𝜂0.1 = 0.25

𝑏𝑒𝑙(𝑋1 = 𝑖𝑠_𝑜𝑝𝑒𝑛) = 𝜂0.3 = 0.75

Bayes Filter - Example 1 (6)

25

Better than initial belief at time t=0!

𝑏𝑒𝑙 𝑋1 = 𝑖𝑠_𝑜𝑝𝑒𝑛 = 𝜂 0.3

𝑏𝑒𝑙 𝑋1 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑 = 𝜂 0.1



ECE4960 Fast Robots

𝑢2 = 𝑝𝑢𝑠ℎ 𝑎𝑛𝑑 𝑧2 = 𝑠𝑒𝑛𝑠𝑒_𝑜𝑝𝑒𝑛

Prediction update:

𝑏𝑒𝑙 𝑋2 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑 = 0 × 0.75 + 0.2 × 0.25 = 0.05

𝑏𝑒𝑙(𝑋2 = 𝑖𝑠_𝑜𝑝𝑒𝑛) = 1 × 0.75 + 0.8 × 0.25 = 0.95

Measurement Update:

𝑏𝑒𝑙 𝑋2 = 𝑖𝑠_𝑐𝑙𝑜𝑠𝑒𝑑 = 0 × 0.2 × 0.05 ≃ 0.017

𝑏𝑒𝑙 𝑋2 = 𝑖𝑠_𝑜𝑝𝑒𝑛 = 𝜂 × 0.6 × 0.95 ≃ 0.983

Bayes Filter - Example 1 (7)
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Waaaay better than the initial belief at time t=0!
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• The robot is modeled as performing a series of 
alternating measurements and actions

• Given: 

- Sensor model  𝑝(𝑧|𝑥)

- Action model 𝑝(𝑥|𝑢, 𝑥’)

- Initial Conditions 𝑝(𝑥0)

• To compute: 

- Estimate state 𝑥 of a dynamical system

- Posterior of the state (Belief): 
𝐵𝑒𝑙(𝑥𝑡) = 𝑝(𝑥𝑡|𝑢1, 𝑧1, … , 𝑢𝑡, 𝑧𝑡)

Summary of  Bayes Filter

27

1. 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐁𝐚𝐲𝐞𝐬_𝐅𝐢𝐥𝐭𝐞𝐫 𝑏𝑒𝑙 𝑥𝑡−1 , 𝑢𝑡 , 𝑧𝑡 :

2. for all 𝑥𝑡 do

3. 𝑏𝑒𝑙 𝑥𝑡 = σ𝑥𝑡−1
𝑝(𝑥𝑡|𝑢𝑡, 𝑥𝑡−1) 𝑏𝑒𝑙 𝑥𝑡−1

4. 𝑏𝑒𝑙 𝑥𝑡 = 𝜂 𝑝(𝑧𝑡|𝑥𝑡) 𝑏𝑒𝑙 𝑥𝑡

5. endfor

6. return 𝑏𝑒𝑙 𝑥𝑡

Short-hand Notation: 𝑥 is current state and 𝑥’ is previous state



ECE4960 Fast Robots

• Prediction Step: 

• Incorporating action, which increases 
uncertainty

• Compute 𝑏𝑒𝑙 𝑥𝑡 = 𝑝(𝑥𝑡|𝑧1:𝑡−1, 𝑢1:𝑡)

• Requires Action Model: p(x|u, x’)

• Measurement/Update Step: 

• Incorporating measurement, which 
decreases uncertainty

• Compute 𝑏𝑒𝑙 𝑥𝑡 = 𝑝(𝑥𝑡|𝑧1:𝑡, 𝑢1:𝑡)

• Requires Sensor Model: p(z|x)

Summary of  Bayes Filter
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1. 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐁𝐚𝐲𝐞𝐬_𝐅𝐢𝐥𝐭𝐞𝐫 𝑏𝑒𝑙 𝑥𝑡−1 , 𝑢𝑡 , 𝑧𝑡 :

2. for all 𝑥𝑡 do

3. 𝑏𝑒𝑙 𝑥𝑡 = σ𝑥𝑡−1
𝑝(𝑥𝑡|𝑢𝑡, 𝑥𝑡−1) 𝑏𝑒𝑙 𝑥𝑡−1

4. 𝑏𝑒𝑙 𝑥𝑡 = 𝜂 𝑝(𝑧𝑡|𝑥𝑡) 𝑏𝑒𝑙 𝑥𝑡

5. endfor

6. return 𝑏𝑒𝑙 𝑥𝑡



Bayes Filter 
Example 2 
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1 2 3 4 5

Sensor Model 
(for sensing a door)

-2 -1 0 1 2

0.25

0.5 𝑝(𝑥 + 1|𝑥, 𝑢 = +1) = 0.5
𝑝(𝑥|𝑥, 𝑢 = +1) = 0.5

𝑝(𝑥-1|𝑥, 𝑢 = -1) = 0.5
𝑝(𝑥|𝑥, 𝑢 = -1) = 0.5

Motion Model

Map

0

Bayes Filter - Example 2 (1)
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At t=0, we have no information about the robot. Therefore, we assume that it could be at any 
location i.e., prior is uniform.  

Bayes Filter - Example 2 (2)

State 0 1 2 3 4 5

𝑏𝑒𝑙(𝑥0) 1

6

1

6

1

6

1

6

1

6

1

6
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At t = 0

Bayes Filter - Example 2 (2)

At t = 1: U1 = do_nothing , Z1 = wall

State 0 1 2 3 4 5

𝑏𝑒𝑙(𝑥1) 0 0 0 0 1
6

×
1
4

1
6

×
1
4

+
1
6

×
1
2

1
6

×
1
2

1
6

×
1
4

+
1
6

×
1
2

State 0 1 2 3 4 5

𝑏𝑒𝑙(𝑥1) 0 0 0 0 1

3

2

3

State 0 1 2 3 4 5

𝑏𝑒𝑙(𝑥0) 1

6

1

6

1

6

1

6

1

6

1

6
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State 0 1 2 3 4 5

𝑏𝑒𝑙(𝑥2) 0 0 0 1

6

1

2

1

3

At t = 2: U2 =  -1

State 0 1 2 3 4 5

𝑏𝑒𝑙(𝑥2) 0 0 0 1

3
×

1

2

1

3
×

1

2
+

2

3
×

1

2

2

3
×

1

2
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Bayes Filter - Example 2 (3)

State 0 1 2 3 4 5

𝑏𝑒𝑙(𝑥1) 0 0 0 0 1

3

2

3

At t = 1



At t = 2: Z2 = wall

State 0 1 2 3 4 5

𝑏𝑒𝑙(𝑥2) 0 0 0 0 3

7

4

7

State 0 1 2 3 4 5

𝑏𝑒𝑙(𝑥2) 0 0 0 1

6
× 0

1
2

×
1
4

1
2

×
1
4

+
1
3

×
1
2

1
3

×
1
2

1
2

×
1
4

+
1
3

×
1
2
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Bayes Filter - Example 2 (4)

State 0 1 2 3 4 5

𝑏𝑒𝑙(𝑥2) 0 0 0 1

6

1

2

1

3

At t = 2



At t=0, we are absolutely certain the robot is at state 𝑋0 = 0

State 0 1 2 3 4 5

𝑏𝑒𝑙(𝑥0) 1 0 0 0 0 0

State 0 1 2 3 4 5

𝑏𝑒𝑙(𝑥1) 0 0 0 0 0 0

At t=1: U1 = do_nothing , Z1 = wall
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Example 2.1: Initial Conditions



At t=0, we are “absolutely” certain the robot is at state 𝑋0 = 0

State 0 1 2 3 4 5

𝑏𝑒𝑙(𝑥0) 19

20

1

100

1

100

1

100

1

100

1

100

State 0 1 2 3 4 5

𝑏𝑒𝑙(𝑥1) 0 0 0 0 1

3

2

3

At t=1: U1 = do_nothing , Z1 = wall
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Example 2.2: Initial Conditions
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