
ECE 4960

Fast Robots

ECE4960 Fast Robots 1

Prof. Kirstin Hagelskjær Petersen
kirstin@cornell.edu



Linear Systems Control

ECE4960 Fast Robots 2

Based on “Control Bootcamp”, Steve Brunton, UW
https://www.youtube.com/watch?v=Pi7l8mMjYVE

• Linear systems review
• Eigenvectors and eigenvalues
• Stability
• Discrete time systems
• Linearizing non-linear systems
• Controllability, LQR
• Observability

• Kalman Filters

https://www.youtube.com/watch?v=Pi7l8mMjYVE


Linear Systems Control – “review of review”

ECE4960 Fast Robots 3

• Linear system: �̇�𝑥 = 𝐴𝐴𝑥𝑥
• Solution: 𝑥𝑥 𝑡𝑡 = 𝑒𝑒𝐴𝐴𝐴𝐴𝑥𝑥 0
• Eigenvectors: 𝑇𝑇 = 𝜉𝜉1 𝜉𝜉2 … 𝜉𝜉𝑛𝑛

• Eigenvalues: D =

𝜆𝜆1 0
𝜆𝜆2

…
0 𝜆𝜆𝑛𝑛

• Linear transform: 𝐴𝐴𝑇𝑇 = 𝑇𝑇𝑇𝑇
• Solution: 𝑒𝑒𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑒𝑒𝐷𝐷𝐴𝐴𝑇𝑇−1
• Mapping from z to x: 𝑥𝑥 𝑡𝑡 = 𝑇𝑇𝑒𝑒𝐷𝐷𝐴𝐴𝑇𝑇−1𝑥𝑥(0)
• Stability in continuous time: 𝜆𝜆 = 𝑎𝑎 + 𝑖𝑖𝑖𝑖, stable iff a<0

• Discrete time: 𝑥𝑥 𝑘𝑘 + 1 = �̃�𝐴𝑥𝑥(𝑘𝑘), �̃�𝐴 = 𝑒𝑒𝐴𝐴Δ𝐴𝐴

• Stability in discrete time: �̃�𝜆𝑛𝑛 = 𝑅𝑅𝑛𝑛𝑒𝑒𝑖𝑖𝑛𝑛𝑖𝑖, stable iff 𝑅𝑅<1

>>[T,D] = eig(A)



Linear Systems Control – “review of review”

ECE4960 Fast Robots 4

• Linearizing non-linear systems
• Fixed points
• Jacobian

• Controllability
• >>rank(ctrb(A,B))
• Reachability
• Controllability Gramian
• Pole placement

• �̇�𝑥 = 𝐴𝐴 − 𝐵𝐵𝐵𝐵 𝑥𝑥
• LQR

• Observability
• >>rank(obsv(A,C))
• Observability Gramian
• Kalman Filter



ECE 4960

Kalman Filter
(continued)

ECE4960 Fast Robots 5

Prof. Kirstin Hagelskjær Petersen
kirstin@cornell.edu

disturbance

noise

Why KF?
• Not full state 

feedback
• Bad sensors
• Slow feedback

system

KF

PID
ySetpoint ue

KF with PID:

system

KFLQR

yu

What you typically apply KF on:



6

• Noise example: Accelerometer
• Solution?

• Take more samples
• Mean: μ = -9.97306mg
• std dev: σ =7.0318mg
• Variance: σ2

Probabilistic Robotics

-40 -30 -20 -10 0 10 20

accX [mg]

0

5

10

15

20

25

30

fre
q

Accelerometer
x-axis

-40 -30 -20 -10 0 10 20

accX [mg]

0

5

10

15

20

25

30

fre
q

Accelerometer
x-axis

• Gaussian distributions
• [μ∓σ]
• Symmetric
• Unimodal
• Sum to “unity”

• Measurements are uncertain
• Actions are uncertain
• Models are uncertain
• States are uncertain



7

Kalman Filter 
• Incorporate uncertainty to get better estimates based on inputs and observations



Kalman Filter 
• Assume that posterior and prior belief are Gaussian variables

• Prediction step
• x(t) =A x(t-1) + Bu(t) + n, where…

• μp(t) = A μ(t-1) + B u(t)
• Σp (t) = A Σ(t-1) AT + Σu

State estimate: μ(t)
State uncertainty: Σ(t)
Process noise: Σu

system

KFLQR

disturbance



Kalman Filter 
• Assume that posterior and prior belief are Gaussian variables

• Prediction step
• x(t) =A x(t-1) + Bu(t) + n, where…

• μp(t) = A μ(t-1) + B u(t)
• Σp (t) = A Σ(t-1) AT + Σu

• Update step

• KKF = Σp(t) CT ( C Σp(t) CT + Σz)-1

• μ(t)= μp(t) +  KKF ( z(t) - C μp(t) )
• Σ(t) =( I – KKF C) Σp(t)

State estimate: μ(t)
State uncertainty: Σ(t)
Process noise: Σu
Kalman filter gain: KKF
Measurement noise: Σz

system

KFLQR

disturbance

noise



10

Kalman Filter ( μ(t-1), Σ(t-1), u(t), z(t) ) 
1. μp(t) = A μ(t-1) + B u(t)
2. Σp (t) = A Σ(t-1) AT + Σu

3. KKF = Σp(t) CT ( C Σp(t) CT + Σz)-1

4. μ(t)= μp(t) +  KKF ( z(t) - C μp(t) )
5. Σ(t) =( I – KKF C) Σp(t)
6. Return μ(t) and Σ(t)

update

prediction

Kalman Filter Implementation

Σ𝑢𝑢 =
𝜎𝜎12 0 0
0 𝜎𝜎22 0
0 0 𝜎𝜎32

,Σ𝑧𝑧 = 𝜎𝜎42 0
0 𝜎𝜎52

State estimate: μ(t)
State uncertainty: Σ(t)
Process noise: Σu
Kalman filter gain: KKF
Measurement noise: Σz

system

KFLQR

disturbance

noise



ECE 4960

Lab Prep

ECE4960 Fast Robots 11

Prof. Kirstin Hagelskjær Petersen
kirstin@cornell.edu

• Lab 6: PID control
• Lab 7: Sensor Fusion
• Lab 8: Stunt



Lab 6-8: PID control – Sensor Fusion - Stunt

ECE4960 Fast Robots 12

• Task A: Don’t Hit the Wall!
• Benefit: Easiest

PIDset point output+

-
actuator

x

Sensor 
fusion

�𝑥𝑥 y



Lab 6-8: PID control – Sensor Fusion - Stunt

ECE4960 Fast Robots 13

• Task A: Don’t Hit the Wall!
• Task B: Drift much?

• Benefit: Good start to lab 9

PIDset point output+

-
actuator

x

Sensor 
fusion

�𝑥𝑥 y



Lab 6-8: PID control – Sensor Fusion - Stunt

ECE4960 Fast Robots 14

• Task A: Don’t Hit the Wall!
• Task B: Drift much?
• Task C: Thread the Needle!

• Benefit: Best use of a Kalman 
Filter and LQG

• Team up and work together!

PIDset point output+

-
actuator

x

Sensor 
fusion

�𝑥𝑥 y



Lab 6-8: PID control – Sensor Fusion - Stunt

ECE4960 Fast Robots 15

• Task A: Don’t Hit the Wall!
• Task B: Drift much?
• Task C: Thread the Needle!
Procedure
• Lab 6: Get basic PID to work
• Do the pre-lab: you need good debugging scripts
• Start simple and work your way up, then hack away…

• Start slow (sampling rates, control frequency)
• Avoid blocking statements

• Wind-up, derivative LPF, derivative kick
• Motor scaling function

• Range of analogWrite: [0;255]
• Directionality
• Deadband



16



Lab 6-8: PID control – Sensor Fusion - Stunt

ECE4960 Fast Robots 17

• Task A: Don’t Hit the Wall!
• Task B: Drift much?
• Task C: Thread the Needle!
Procedure
• Lab 6: Get basic PID to work
• Lab 7: Sensor Fusion

• Approximate the state space equations
• Step response

• Implement Kalman Filter
• Determine process and measurement noise
• Try it offline on solution from lab 6
• Try it online on your robot 

• Lab 8: Use KF and PID control to execute fast stunts



Task A: Don’t Hit the Wall

ECE4960 Fast Robots 18

• Lab 6, Task A, example solution

PIDset point output+

-
actuator

x

PI control
Kp = 0.007
KI = 0.00005
Dead band = 35
Setpoint = 300

slooow



𝐹𝐹 = 𝑚𝑚𝑎𝑎 = 𝑚𝑚�̈�𝑥
𝐹𝐹 = 𝑢𝑢 − 𝑑𝑑�̇�𝑥
𝑢𝑢 − 𝑑𝑑�̇�𝑥 = 𝑚𝑚�̈�𝑥

�̈�𝑥 =
𝑢𝑢
𝑚𝑚
−
𝑑𝑑
𝑚𝑚
�̇�𝑥

What is d and m?

Lab 7, Task A: State Space Equations

State space equation

�̇�𝑥
�̈�𝑥 =

0 1

0 −
𝑑𝑑
𝑚𝑚

𝑥𝑥
�̇�𝑥 +

0
1
𝑚𝑚

𝑢𝑢

𝐶𝐶 = −1 0

𝒙𝒙

𝒖𝒖
�̅�𝑥 = 𝑥𝑥

�̇�𝑥



𝐹𝐹 = 𝑚𝑚𝑎𝑎 = 𝑚𝑚�̈�𝑥
𝐹𝐹 = 𝑢𝑢 − 𝑑𝑑�̇�𝑥
𝑢𝑢 − 𝑑𝑑�̇�𝑥 = 𝑚𝑚�̈�𝑥

�̈�𝑥 =
𝑢𝑢
𝑚𝑚
−
𝑑𝑑
𝑚𝑚
�̇�𝑥

What is d and m?
• At steady state (cst speed), we can find d

• 0 = 𝑢𝑢
𝑚𝑚
− 𝑑𝑑

𝑚𝑚
�̇�𝑥

• 0 = 𝑢𝑢
𝑚𝑚
− 𝑑𝑑

𝑚𝑚
�̇�𝑥 ↔ 𝑑𝑑 = 𝑢𝑢

�̇�𝑥

Lab 7, Task A: State Space Equations

State space equation

�̇�𝑥
�̈�𝑥 =

0 1

0 −
𝑑𝑑
𝑚𝑚

𝑥𝑥
�̇�𝑥 +

0
1
𝑚𝑚

𝑢𝑢

𝐶𝐶 = −1 0

𝒙𝒙

𝒖𝒖
�̅�𝑥 = 𝑥𝑥

�̇�𝑥



21

Lab 7, Task A: State Space Equations

𝐹𝐹 = 𝑚𝑚𝑎𝑎 = 𝑚𝑚�̈�𝑥
𝐹𝐹 = 𝑢𝑢 − 𝑑𝑑�̇�𝑥
𝑢𝑢 − 𝑑𝑑�̇�𝑥 = 𝑚𝑚�̈�𝑥

�̈�𝑥 =
𝑢𝑢
𝑚𝑚
−
𝑑𝑑
𝑚𝑚
�̇�𝑥

What is d and m?
• At steady state (cst speed), we can find d

𝒙𝒙

𝒖𝒖
�̅�𝑥 = 𝑥𝑥

�̇�𝑥

PW
M

[s] [s] [s]

TO
F 

[m
m

]

ve
l [

m
m

/s
]



𝐹𝐹 = 𝑚𝑚𝑎𝑎 = 𝑚𝑚�̈�𝑥
𝐹𝐹 = 𝑢𝑢 − 𝑑𝑑�̇�𝑥
𝑢𝑢 − 𝑑𝑑�̇�𝑥 = 𝑚𝑚�̈�𝑥

�̈�𝑥 =
𝑢𝑢
𝑚𝑚
−
𝑑𝑑
𝑚𝑚
�̇�𝑥

What is d and m?
• At steady state (cst speed), we can find d

• 0 = 𝑢𝑢
𝑚𝑚
− 𝑑𝑑

𝑚𝑚
�̇�𝑥

• 0 = 𝑢𝑢
𝑚𝑚
− 𝑑𝑑

𝑚𝑚
�̇�𝑥 ↔ 𝑑𝑑 = 𝑢𝑢

�̇�𝑥

• 𝑑𝑑 ≈ 1
2000𝑚𝑚𝑚𝑚/𝑠𝑠

Lab 7, Task A: State Space Equations

State space equation

�̇�𝑥
�̈�𝑥 =

0 1

0 −
𝑑𝑑
𝑚𝑚

𝑥𝑥
�̇�𝑥 +

0
1
𝑚𝑚

𝑢𝑢

𝐶𝐶 = −1 0

𝒙𝒙

𝒖𝒖
�̅�𝑥 = 𝑥𝑥

�̇�𝑥

(Assume u=1 for now)



𝐹𝐹 = 𝑚𝑚𝑎𝑎 = 𝑚𝑚�̈�𝑥
𝐹𝐹 = 𝑢𝑢 − 𝑑𝑑�̇�𝑥
𝑢𝑢 − 𝑑𝑑�̇�𝑥 = 𝑚𝑚�̈�𝑥

�̈�𝑥 =
𝑢𝑢
𝑚𝑚
−
𝑑𝑑
𝑚𝑚
�̇�𝑥

What is d and m?
• Find m
• Use the 90% rise time to determine 𝑚𝑚

• �̇�𝑣 = 𝑢𝑢
𝑚𝑚
− 𝑑𝑑

𝑚𝑚
𝑣𝑣

• 𝑣𝑣 = 1 − 𝑒𝑒−
𝑑𝑑
𝑚𝑚𝐴𝐴0.9 ↔ 1 − 𝑣𝑣 = 𝑒𝑒−

𝑑𝑑
𝑚𝑚𝐴𝐴0.9

• ln 1 − 𝑣𝑣 = − 𝑑𝑑
𝑚𝑚
𝑡𝑡0.9

• 𝑚𝑚 = −𝑑𝑑𝐴𝐴0.9
ln(1−0.9)

Lab 7, Task A: State Space Equations

State space equation

�̇�𝑥
�̈�𝑥 =

0 1

0 −
𝑑𝑑
𝑚𝑚

𝑥𝑥
�̇�𝑥 +

0
1
𝑚𝑚

𝑢𝑢

𝐶𝐶 = −1 0

𝒙𝒙

𝒖𝒖
�̅�𝑥 = 𝑥𝑥

�̇�𝑥

1st order system:
𝑑𝑑𝑑𝑑(𝐴𝐴)
𝑑𝑑𝐴𝐴

+ 1
𝜏𝜏
𝑦𝑦(𝑡𝑡) = 𝑥𝑥(𝑡𝑡)

Unit step response solution: 

𝑦𝑦(𝑡𝑡) = 1 − 𝑒𝑒−
𝐴𝐴
𝜏𝜏



𝐹𝐹 = 𝑚𝑚𝑎𝑎 = 𝑚𝑚�̈�𝑥
𝐹𝐹 = 𝑢𝑢 − 𝑑𝑑�̇�𝑥
𝑢𝑢 − 𝑑𝑑�̇�𝑥 = 𝑚𝑚�̈�𝑥

�̈�𝑥 =
𝑢𝑢
𝑚𝑚
−
𝑑𝑑
𝑚𝑚
�̇�𝑥

What is d and m?
• Find m
• Use the 90% rise time to determine 𝑚𝑚

Lab 7, Task A: State Space Equations

𝐶𝐶 = −1 0

𝒙𝒙

𝒖𝒖
�̅�𝑥 = 𝑥𝑥

�̇�𝑥

1st order system:
𝑑𝑑𝑑𝑑(𝐴𝐴)
𝑑𝑑𝐴𝐴

+ 1
𝜏𝜏
𝑦𝑦(𝑡𝑡) = 𝑥𝑥(𝑡𝑡)

Unit step response solution: 

𝑦𝑦(𝑡𝑡) = 1 − 𝑒𝑒−
𝐴𝐴
𝜏𝜏



𝐹𝐹 = 𝑚𝑚𝑎𝑎 = 𝑚𝑚�̈�𝑥
𝐹𝐹 = 𝑢𝑢 − 𝑑𝑑�̇�𝑥
𝑢𝑢 − 𝑑𝑑�̇�𝑥 = 𝑚𝑚�̈�𝑥

�̈�𝑥 =
𝑢𝑢
𝑚𝑚
−
𝑑𝑑
𝑚𝑚
�̇�𝑥

What is d and m?
• Use the 90% rise time to find 𝑚𝑚

• �̇�𝑣 = 𝑢𝑢
𝑚𝑚
− 𝑑𝑑

𝑚𝑚
𝑣𝑣

• 𝑣𝑣 = 1 − 𝑒𝑒−
𝑑𝑑
𝑚𝑚𝐴𝐴0.9 ↔ 1 − 𝑣𝑣 = 𝑒𝑒−

𝑑𝑑
𝑚𝑚𝐴𝐴0.9

• ln 1 − 𝑣𝑣 = − 𝑑𝑑
𝑚𝑚
𝑡𝑡0.9

• 𝑚𝑚 = −𝑑𝑑𝐴𝐴0.9
ln(1−0.9)

= −0.0005�1.9
ln(0.1)

= 4.1258 � 10−4

Lab 7, Task A: State Space Equations

State space equation

�̇�𝑥
�̈�𝑥 =

0 1

0 −
𝑑𝑑
𝑚𝑚

𝑥𝑥
�̇�𝑥 +

0
1
𝑚𝑚

𝑢𝑢

𝐶𝐶 = −1 0

𝒙𝒙

𝒖𝒖
�̅�𝑥 = 𝑥𝑥

�̇�𝑥

1st order system:
𝑑𝑑𝑑𝑑(𝐴𝐴)
𝑑𝑑𝐴𝐴

+ 1
𝜏𝜏
𝑦𝑦(𝑡𝑡) = 𝑥𝑥(𝑡𝑡)

Unit step response solution: 

𝑦𝑦(𝑡𝑡) = 1 − 𝑒𝑒−
𝐴𝐴
𝜏𝜏



𝐹𝐹 = 𝑚𝑚𝑎𝑎 = 𝑚𝑚�̈�𝑥
𝐹𝐹 = 𝑢𝑢 − 𝑑𝑑�̇�𝑥
𝑢𝑢 − 𝑑𝑑�̇�𝑥 = 𝑚𝑚�̈�𝑥

�̈�𝑥 =
𝑢𝑢
𝑚𝑚
−
𝑑𝑑
𝑚𝑚
�̇�𝑥

What is d and m?
• At steady state (cst speed), we can find d

• 𝑑𝑑 = 𝑢𝑢
�̇�𝑥
≈ 0.0005

• We can use the 90% rise time to find m
• 𝑚𝑚 = −𝑑𝑑𝐴𝐴0.9

ln(0.1)
≈ 4.1258 � 10−4

Lab 7, Task A: State Space Equations

State space equation

�̇�𝑥
�̈�𝑥 =

0 1

0 −
𝑑𝑑
𝑚𝑚

𝑥𝑥
�̇�𝑥 +

0
1
𝑚𝑚

𝑢𝑢

𝐶𝐶 = −1 0

𝒙𝒙

𝒖𝒖
�̅�𝑥 = 𝑥𝑥

�̇�𝑥

(Assume u=1 for now)



Implement the Kalman Filter
• Process noise (dependent on sampling rate)

Σ𝑢𝑢 = 𝜎𝜎12 0
0 𝜎𝜎22

• Trust in modeled position: 

• Position std after 1s: 102 � 1
0.13 = 27.7𝑚𝑚𝑚𝑚

• Trust in modeled speed:

• Speed std after 1s: 102 � 1
0.13 = 27.7𝑚𝑚𝑚𝑚/𝑠𝑠

• Measurement noise
• Σ𝑧𝑧 = 𝜎𝜎32

• 𝜎𝜎32 = (20𝑚𝑚𝑚𝑚)2

Lab 7, Task A: State Space Equations

𝒙𝒙

𝒖𝒖
�̅�𝑥 = 𝑥𝑥

�̇�𝑥

1 sample 
per ~0.13s



• We have A, B, C, Σ𝑢𝑢, Σ𝑧𝑧

• Discretize the A and B matrices
• x(n+1) = x(n) + dx
• dx = dt (Ax + Bu) 
• x(n+1) = x(n) + dt (Ax(n) + Bu)
• x(n+1) = (I + dt*A) x(n) + dt*B u

• dt is our sampling time (0.130s)

• Rescale from unity input to actual input

Lab 7, Task A: State Space Equations

𝒙𝒙

𝒖𝒖
�̅�𝑥 = 𝑥𝑥

�̇�𝑥

State space equation

�̇�𝑥
�̈�𝑥 =

0 1

0 −
𝑑𝑑
𝑚𝑚

𝑥𝑥
�̇�𝑥 +

0
1
𝑚𝑚

𝑢𝑢

𝐶𝐶 = −1 0

Ad Bd



29

Lab 7, Task A: Kalman Filter

PI control
Kp = 0.007
KI = 0.00005
Deadband = 35
Setpoint = 300

With Kalman filter

Kalman Filter
Original data

Task A/B



30



Lab 6-8: PID control – Sensor Fusion - Stunt

ECE4960 Fast Robots 36

• Task A: Don’t Hit the Wall!
• Task B: Drift much?
• Task C: Thread the Needle!
Procedure
• Lab 6: Get basic PID to work, consider sampling time, start slow
• Lab 7: Sensor Fusion

• Approximate the state space equations
• Step response

• Implement Kalman Filter
• Determine process and measurement noise
• Try it offline on solution from lab 6
• Try it online on your robot 

• Lab 8: Use KF and PID control to execute stunt
• *You’re welcome to try an LQG (LQR and KF) controller!



37

• Transformation matrices
• Bluetooth communication and data 

types
• Distance Sensors
• Odometry and IMU
• Actuators
• Controllers

• PID control
• LQR

• Observers
• Navigation

• Deterministic → Probabilistic robots

What we covered in class so far…



ECE 4960

Navigation

ECE4960 Fast Robots 38

Prof. Kirstin Hagelskjær Petersen
kirstin@cornell.edu



Navigation and Path Planning

• How do you get to your goal?
• No simple answers…

• Can you see your goal?
• Do you have a map?
• Are obstacles unknown or dynamic?
• Does it matter how fast you get there?
• Does it matter how smooth the path is?
• How much computing power do you have?
• How precise and accurate is your motion control?



● Problem: Find the path in the workspace from an initial location to a goal location, 
while avoiding collisions

● Assumption: There exists a good map of the environment for navigation

• Global navigation
• Given a map and a goal 

location, find and execute a 
trajectory that brings the 
robot to the goal

• (Long term plan)
• Local navigation

• Given real-time sensor 
readings, modulate the robot 
trajectory to avoid collisions 

• (Short term plan)

Navigation and Path Planning



Information 
Extraction

Raw Sensor Data

PE
RC

EP
TI

O
N

Environmental 
model

Localization

ES
TI

M
AT

IO
N

Path

Path Planning

PLAN
N

IN
G

Actuator 
Commands

Path Execution M
O

TIO
N

 
CO

N
TRO

L

Global Map and State

WORLD

• Navigation breaks down to: Localization, Map Building, Path Planning
Navigation and Path Planning



42

• Local planners
• Global localization and planning

• Map representations
• Continuous
• Discrete 
• Topological

• Maps as graphs
• Graph Search Algorithms

• Breadth First Search
• Depth First Search
• Dijkstras
• A*

Outline of the next module on Navigation



ECE 4960

Local Planners

ECE4960 Fast Robots 43

Prof. Kirstin Hagelskjær Petersen
kirstin@cornell.edu

mailto:kirstin@cornell.edu


44

Wagner, ITS 2015

• Utilize goal position, recent sensor readings, and relative position of robot 
to goal

• Implemented as a separate task most of the times
• Runs at a much faster rate than the global planning

• BUG Algorithms
• Vector Field Histogram (VFH)
• Dynamic Window Approach (DWA)

Local Path Planning / Obstacle Avoidance



45

• Uses local knowledge, and the direction and distance to the goal
• Basic idea

• Follow the contour of obstacles until you see the goal
• State 1: Seek goal
• State 2: follow wall

• Different variants: Bug0, Bug1, Bug2
• Advantages

• Super simple
• No global map
• Completeness

• Disadvantages
• Suboptimal

Bug Algorithms



Bug 0
Sensor Assumptions
• Direction to the goal
• Detect walls

Algorithm
1. Go towards goal
2. Follow obstacles until you can go 

towards goal again
3. Loop

Howie Choset 16-735



Bug 0
Sensor Assumptions
• Direction to the goal
• Detect walls

Howie Choset 16-735

Algorithm
1. Go towards goal
2. Follow obstacles until you can go 

towards goal again
3. Loop



Bug 0
Sensor Assumptions
• Direction to the goal
• Detect walls

Howie Choset 16-735

Algorithm
1. Go towards goal
2. Follow obstacles until you can go 

towards goal again
3. Loop



Bug 1
Sensor Assumptions
• Direction to the goal
• Detect walls
• Odometry

Algorithm
1. Go towards goal
2. Follow obstacles and remember how close 

you got to the goal
3. Return to the closest point, and loop

Howie Choset 16-735



Bug 1
Sensor Assumptions
• Direction to the goal
• Detect walls
• Odometry

Algorithm
1. Go towards goal
2. Follow obstacles and remember how close 

you got to the goal
3. Return to the closest point, and loop

Howie Choset 16-735



Bug 1 - formally
Sensor Assumptions
• Direction to the goal
• Detect walls
• Odometry

• Lower bound traversal?
• d

• Upper bound traversal?
• d + 1.5 ∙ Sum(Pn)

• Pros?
• If a path exist, it returns one in finite time
• AND it knows if none exist!

d
Pn

Howie Choset 16-735



Bug 2
Sensor Assumptions
• Direction to the goal
• Detect walls
• Odometry
• Original vector to the goal

Algorithm
1. Go towards goal on the vector
2. Follow obstacles until you are back on the 

vector (and closer to the obstacle)
3. Loop

Howie Choset 16-735



Bug 2
Sensor Assumptions
• Direction to the goal
• Detect walls
• Odometry
• Original vector to the goal

Algorithm
1. Go towards goal on the vector
2. Follow obstacles until you are back on the 

vector (and closer to the obstacle)
3. Loop

Howie Choset 16-735



Howie Choset 16-735Bug 2
Sensor Assumptions
• Direction to the goal
• Detect walls
• Odometry
• Original vector to the goal

Algorithm
1. Go towards goal on the vector
2. Follow obstacles until you are back on the 

vector (and closer to the obstacle)
3. Loop

What is faster, right- or left 
wall following?



55

Battle of the Bugs (1 vs 2)
https://www.youtube.com/watch?v=T2PVaKyxMmY



56

Battle of the Bugs (1 vs 2)

Exhaustive Search Greedy Search

https://www.youtube.com/watch?v=T2PVaKyxMmY



57

• The robot motion behavior is reactive
• Issues if the instantaneous sensor 

readings do not provide enough 
information or are noisy

• Uses local knowledge, and the direction and distance to the goal
• Basic idea

• Follow the contour of obstacles until you see the goal
• State 1: Seek goal
• State 2: follow wall

• Different variants: Bug0, Bug1, Bug2

Bug Algorithms



58

http://www.personal.umich.edu/
~johannb/Papers/paper16.pdf

• VFH creates a local map of the environment around the 
robot populated by “relatively” recent sensor readings

• Build a local 2D grid map → reduce to 1-DoF histogram
• Planning

• Find all openings large enough  for robot to pass
• Choose the one with the lowest cost, G 
• G = a*goal_direction + b*orientation + c*prev_direction

Vector Field Histograms



59

http://www.personal.umich.edu/
~johannb/Papers/paper16.pdf

• VFH creates a local map of the environment around the 
robot populated by “relatively” recent sensor readings

• Build a local 2D grid map → reduce to 1-DoF histogram
• Planning

• Find all openings large enough  for robot to pass
• Choose the one with the lowest cost, G 
• G = a*goal_direction + b*orientation + c*prev_direction
• VHF+: Incorporate kinematics

• Limitations
• Does not avoid local minima
• Not guaranteed to reach goal

Vector Field Histograms



60

http://www4.cs.umanitoba.ca/~jacky/Teaching/Courses/
74.795-LocalVision/ReadingList/fox97dynamic.pdf

• Search in the velocity space (robot moves in circular arcs)
• Takes into account robot acceleration capabilities and update rate

• A dynamic window, Vd, is the set of all tuples (vd, ωd) that can be reached
• Admissible velocities, Va, include those where the robot can stop before 

collision
• The search space is then 𝑉𝑉𝑟𝑟 = 𝑉𝑉𝑠𝑠 ∩ 𝑉𝑉𝑎𝑎 ∩ 𝑉𝑉𝑑𝑑
• Cost function: 

Dynamic Window Approach



61

• Bug Algorithms
• Inefficient, but can be exhaustive

• Vector Field Histograms 
• Takes into account probabilistic sensor measurements

• Vector Field Histograms +
• Takes into account probabilistic sensor measurements and robot kinematics

• Dynamic Window Approach
• Takes into account robot dynamics

Local Planning Algorithms, Summary


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Outline of the next module on Navigation
	Slide Number 43
	Local Path Planning / Obstacle Avoidance
	Bug Algorithms
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Bug Algorithms
	Vector Field Histograms
	Vector Field Histograms
	Dynamic Window Approach
	Local Planning Algorithms, Summary

