
ECE 4960

Fast Robots
(Lecture 14 KF-Graph Construction)

ECE4960 Fast Robots 1

Prof. Kirstin Hagelskjær Petersen
kirstin@cornell.edu

ECE 4960

Kalman Filter
(one last example)

ECE4960 Fast Robots 2

Prof. Kirstin Hagelskjær Petersen
kirstin@cornell.edu

3

Kalman Filter
• Incorporate uncertainty to get better estimates based on inputs and observations

Input
Dynamics

model

4

Kalman Filter (μ(t-1), Σ(t-1), u(t), z(t))
1. μp(t) = A μ(t-1) + B u(t)
2. Σp (t) = A Σ(t-1) AT + Σu

3. KKF = Σp(t) CT (C Σp(t) CT + Σz)-1

4. μ(t)= μp(t) + KKF (z(t) - C μp(t))
5. Σ(t) =(I – KKF C) Σp(t)
6. Return μ(t) and Σ(t)

update

prediction

Kalman Filter Implementation

Σ𝑢𝑢 =
𝜎𝜎12 0 0
0 𝜎𝜎22 0
0 0 𝜎𝜎32

,Σ𝑧𝑧 = 𝜎𝜎42 0
0 𝜎𝜎52

State estimate: μ(t)
State uncertainty: Σ(t)
Process noise: Σu
Kalman filter gain: KKF
Measurement noise: Σz

system

KFLQR

disturbance

noise

Lab 6-8: PID control – Sensor Fusion - Stunt

ECE4960 Fast Robots 5

• Task A: Don’t Hit the Wall!
• Task B: Drift much?
• Task C: Thread the Needle!

• Benefit: Best use of a Kalman
Filter and LQG

PIDset point output+

-
actuator

x

Sensor
fusion

�𝑥𝑥 y

Lab 6-8: PID control – Sensor Fusion - Stunt

ECE4960 Fast Robots 6

• Task A: Don’t Hit the Wall!
• Task B: Drift much?
• Task C: Thread the Needle!
Procedure
• Lab 6: Get basic PID to work
• Lab 7: Sensor Fusion

• Approximate the state space equations
• Step response

• Implement Kalman Filter
• Determine process and measurement noise
• Try it offline on solution from lab 6
• Try it online on your robot

• Lab 8: Use KF and PID control to execute fast stunts

• Find d at steady state
• �̈�𝜃𝑆𝑆𝑆𝑆 = 0

• 𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝐼𝐼

− 𝑑𝑑
𝐼𝐼
�̇�𝜃𝑆𝑆𝑆𝑆 = 0

• 𝑑𝑑 = 𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
�̇�𝜃𝑆𝑆𝑆𝑆

ECE4960 Fast Robots 7

• Equations of Motion
• �̇�𝑧 = 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝜃𝜃)

• Small-angle appr.: �̇�𝑧 = 𝑣𝑣𝜃𝜃
• Input, u, is a torque

• 𝑢𝑢 − 𝑑𝑑�̇�𝜃 = 𝐼𝐼�̈�𝜃

• 𝑢𝑢
𝐼𝐼
− 𝑑𝑑

𝐼𝐼
�̇�𝜃 = �̈�𝜃 v, d, I?

Lab 7, Task C: State Space Equations

vu

𝜃𝜃 z

�̇�𝑧
�̇�𝜃
�̈�𝜃

=

0 𝑣𝑣 0
0 0 1

0 0 −
𝑑𝑑
𝐼𝐼

𝑧𝑧
𝜃𝜃
�̇�𝜃

+

0
0
1
𝐼𝐼

𝑢𝑢 𝑧𝑧
𝜃𝜃
�̇�𝜃

ECE4960 Fast Robots 8

• Equations of Motion
• �̇�𝑧 = 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝜃𝜃)

• Small-angle appr.: �̇�𝑧 = 𝑣𝑣𝜃𝜃
• Input, u, is a torque

• 𝑢𝑢 − 𝑑𝑑�̇�𝜃 = 𝐼𝐼�̈�𝜃

• 𝑢𝑢
𝐼𝐼
− 𝑑𝑑

𝐼𝐼
�̇�𝜃 = �̈�𝜃

Lab 7, Task C: State Space Equations

Use the 90% rise time to determine 𝐼𝐼
• Pretend θ̇=x:

• �̇�𝑥 = −𝑑𝑑
𝐼𝐼
𝑥𝑥 + 𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐼𝐼

• �̇�𝑥 + 𝑑𝑑
𝐼𝐼
𝑥𝑥 = 𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐼𝐼

• 𝑥𝑥 = 1 − 𝑒𝑒−
𝑑𝑑
𝐼𝐼𝑡𝑡0.9 ↔ 1 − 𝑥𝑥 = 𝑒𝑒−

𝑑𝑑
𝐼𝐼𝑡𝑡0.9

• ln 1 − 𝑥𝑥 = −𝑑𝑑
𝐼𝐼
𝑡𝑡0.9

• 𝐼𝐼 = −𝑑𝑑𝑡𝑡0.9
ln(0.1)

v, d, I?

�̇�𝑧
�̇�𝜃
�̈�𝜃

=

0 𝑣𝑣 0
0 0 1

0 0 −
𝑑𝑑
𝐼𝐼

𝑧𝑧
𝜃𝜃
�̇�𝜃

+

0
0
1
𝐼𝐼

𝑢𝑢 1st order system:
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡

+ 1
𝜏𝜏
𝑥𝑥(𝑡𝑡) = 𝑦𝑦(𝑡𝑡)

Step response solution:

𝑥𝑥(𝑡𝑡) = 1 − 𝑒𝑒−
𝑡𝑡
𝜏𝜏

(unit step
response)

Ramp
up

phase

step

coast

9

Lab 7, Task C: Kalman Filter
• 𝑑𝑑 = 𝑢𝑢𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠

�̇�𝜃𝑆𝑆𝑆𝑆
= −1

−28𝜋𝜋/180
= 2.047

• 𝐼𝐼 = −𝑑𝑑𝑡𝑡0.9
ln(0.1)

= −2.047�1.3
−2.3026

= 1.156

• Σ𝑢𝑢 =
𝜎𝜎12 0 0
0 𝜎𝜎22 0
0 0 𝜎𝜎32

• 𝜎𝜎1 = 52 � 1
0.05 = 22𝑚𝑚𝑚𝑚

• 𝜎𝜎2 = 0.1𝑟𝑟𝑟𝑟𝑑𝑑 = 5.7𝑑𝑑𝑒𝑒𝑑𝑑, 𝜎𝜎3 = 0.1 𝑟𝑟𝑟𝑟𝑑𝑑
𝑠𝑠

= 5.7 𝑑𝑑𝑑𝑑𝑑𝑑
𝑠𝑠

• Σ𝑧𝑧 = 𝜎𝜎42 0
0 𝜎𝜎52

• 𝜎𝜎4 = 5𝑚𝑚𝑚𝑚,𝜎𝜎5 = 0.4 𝑟𝑟𝑟𝑟𝑑𝑑
𝑠𝑠

• Initial covariance: Σ =
52 0 0
0 0.12 0
0 0 0.052

10

Lab 7, Task C: Kalman Filter
• What about 𝑣𝑣?

• Drive towards a wall at base
speed and use ToF data

• Max speed
• Appr. 1750mm/s

• Check it visually in our video
• Max speed

• Appr. 6000mm/8s =
750mm/s

• Why??

ECE4960 Fast Robots 11

Lab 7, Task C: State Space Equations

vu

𝜃𝜃 z

• We know A and B, we measured (d, I, v)

• 𝐶𝐶 = 1 0 0
0 0 1

• We estimated:
• Σ𝑢𝑢, Σ𝑧𝑧, Σ

• Convert from A, B to Ad, Bd
• Convert from unit input to real input

• Equations of Motion
• �̇�𝑧 = 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣(𝜃𝜃)

• Small-angle appr.: �̇�𝑧 = 𝑣𝑣𝜃𝜃
• Input, u, is a torque

• 𝑢𝑢 − 𝑑𝑑�̇�𝜃 = 𝐼𝐼�̈�𝜃

• 𝑢𝑢
𝐼𝐼
− 𝑑𝑑

𝐼𝐼
�̇�𝜃 = �̈�𝜃

�̇�𝑧
�̇�𝜃
�̈�𝜃

=

0 𝑣𝑣 0
0 0 1

0 0 −
𝑑𝑑
𝐼𝐼

𝑧𝑧
𝜃𝜃
�̇�𝜃

+

0
0
1
𝐼𝐼

𝑢𝑢

(measured by driving at base speed towards a wall)

Lab 7, Task C: PID control and Kalman Filter

ECE4960 Fast Robots 12

setpoint

base speed

Lab 7, Task C: PID control and Kalman Filter

ECE4960 Fast Robots 13

setpoint

base speed

*We could run this both when TOF- and when gyroscope
measurements come in.

14

Kalman Filter (μ(t-1), Σ(t-1), u(t), z(t))
1. μp(t) = A μ(t-1) + B u(t)
2. Σp (t) = A Σ(t-1) AT + Σu

3. KKF = Σp(t) CT (C Σp(t) CT + Σz)-1

4. μ(t)= μp(t) + KKF (z(t) - C μp(t))
5. Σ(t) =(I – KKF C) Σp(t)
6. Return μ(t) and Σ(t)

update

prediction

Kalman Filter Implementation

system

KFLQR

disturbance

noise

Why KF?
• Not full state feedback
• Bad sensors
• Slow feedback

ECE 4960

Constructing Graphs

ECE4960 Fast Robots 15

Prof. Kirstin Hagelskjær Petersen
kirstin@cornell.edu

Modelling path planning as a graph search
problem

Real world Configuration
Space

Map
Representation

Graph
Search

Graph
Construction

• Topological Graphs
• Cell decomposition
• Visibility Graphs
• RRT
• PRM

Global Motion Planning with Maps

Common alternatives
• Optimal control
• Potential fields

• Transform continuous/discrete/topological maps to a discrete graph
• Why?

• Model the path planning problem as a search problem
• Graph theory has lots of tools
• Real-time capable algorithms
• Can accommodate for evolving maps

1. Divide space into simple, connected regions, or “cells”
2. Determine adjacency of open cells
3. Construct a connectivity graph
4. Find cells with initial and goal configuration
5. Search for a path in the connectivity graph to join them
6. From the sequence of cells, compute a path within each cell

• e.g. passing through the midpoints of cell boundaries or by
sequence of wall following movements

Graph Construction

Topological Maps

• Good abstract representation
• Tradeoff in # of nodes

• Complexity vs. accuracy
• Efficient in large, sparse environments
• Loss in geometric precision

• Edges can carry weights
• Limited information

Geometry-Based Planners

(Lab 9-13)

Adaptive Cell Decomposition

Fixed Cell Decomposition

Trapezoidal Cell Decomposition

• Connect initial and goal locations with all visible vertices

Ioannis Rekleitis,
South Carolina

Visibility Graphs

• Connect initial and goal locations with all visible vertices
• Connect each obstacle vertex to every visible obstacle vertex

Ioannis Rekleitis,
South Carolina

Visibility Graphs

• Connect initial and goal locations with all visible vertices
• Connect each obstacle vertex to every visible obstacle vertex
• Remove edges that intersect the interior of an obstacle

Ioannis Rekleitis,
South Carolina

Visibility Graphs

• Connect initial and goal locations with all visible vertices
• Connect each obstacle vertex to every visible obstacle vertex
• Remove edges that intersect the interior of an obstacle
• Plan on the resulting graph

Ioannis Rekleitis,
South Carolina

Visibility Graphs

• Connect initial and goal locations with all visible vertices
• Connect each obstacle vertex to every visible obstacle vertex
• Remove edges that intersect the interior of an obstacle
• Plan on the resulting graph

Ioannis Rekleitis,
South Carolina

Visibility Graphs

• Explicit geometry-based planners are impractical in high dimensional spaces

• Sampling-based planners

• Often efficient in high dimensional spaces

• Rather than computing the C-Space explicitly, we sample it

• Compute if a robot configuration is in collision
• Just need forward kinematics for each configuration

• (Local path plans between each configuration)

• Examples
• Probabilistic Roadmaps (PRM)

• Rapidly Exploring Random Trees (RRT)

Sampling-Based Planners

Free/feasible spaceSpace ℜn free/forbidden space
Lydia Kavraki, 1996
Rice Univeristy

Probabilistic Roadmaps

Workspace perimeter

Obstacles

Free space

Configurations are sampled by picking coordinates at random

Probabilistic Roadmaps

Sampled configurations are tested for collision

Probabilistic Roadmaps

Each configuration is linked by straight paths to its nearest neighbors

Probabilistic Roadmaps

The collision-free links are retained as local paths to form the PRM

Probabilistic Roadmaps

The start and goal configurations are included as milestones

start goal

Probabilistic Roadmaps

The PRM is searched for a path from start to goal

start goal

Probabilistic Roadmaps

● Initially empty Graph G

● A configuration q is randomly chosen

● If q ϵ Qfree then add to G

○ <need collision detection>

● Repeat until N vertices chosen

● For each q, select k closest neighbors

● Local planner, Δ, connects q to neighbor q’

● If connection is collision free, add edge (q,
q’)

Probabilistic Roadmaps

Constructing the graph

● Connect qinit and qgoal to the roadmap

● Find k nearest neighbors of qinit and qgoal
in roadmap, plan local path Δ

● Compute cost of path

● Repeat until graphs are connected

● Choose cheapest path

Probabilistic Roadmaps

Finding the Path

Probabilistic Roadmaps

Finding the Path

• Single query/multi query

• How are nodes placed?
• Uniform sampling strategies
• Non-uniform sampling strategies

• How are local neighbors found?

• How is collision detection performed?
• Dominates time consumption in PRMs

Probabilistic Roadmaps

Considerations

• “Robot Motion Planning on a Chip”, Murray et al. RSS 2016
• Company: Real Time Robotics

• PRM on an FPGA
• Collision detection circuits on each edge in logic gates for massive parallel operation
• 6DOF planning in <1ms

Probabilistic Roadmaps

ECE 4960

Rapidly Exploring Random
Trees (RRT)

ECE4960 Fast Robots 39

Prof. Kirstin Hagelskjær Petersen
kirstin@cornell.edu

mailto:kirstin@cornell.edu

Rapidly Exploring Random Trees (RRT)
– Uniform/biased sampling

S. LaValle, UIUC / OculusAaron Becker, UH, Wolfram Player example

1. Maintain a tree rooted at the starting point
2. Choose a point at random from free space
3. Find the closest configuration already in the tree
4. Extend the tree in the direction of the new configuration

Rapidly Exploring Random Trees (RRT)

1. Algorithm BuildRRT
2. Input: Initial configuration qinit, number of vertices K,

incremental distance Δq)
3. Output: RRT graph G
4. G.init(qinit)
5. for k = 1 to K
6. qrand ← RAND_CONF()
7. qnear ← NEAREST_VERTEX(qrand, G)
8. qnew ← NEW_CONF(qnear, qrand, Δq)
9. G.add_vertex(qnew)
10. G.add_edge(qnear, qnew)
11. return G

Rapidly Exploring Random Trees (RRT)

● Sensitive to step-size (∆q)

○ Small: many nodes, closely spaced, slowing down nearest neighbor computation

○ Large: Increased risk of suboptimal plans / not finding a solution

● How are samples chosen?

○ Uniform sampling may need too many samples to find the goal

○ Biased sampling towards goal can ease this problem

● How are local paths generated?

● How are closest neighbors found?

Rapidly Exploring Random Trees (RRT) - Considerations

• RRT Connect
• Two trees rooted at start and goal locations

• RRT*
• Converges towards an optimal solution
• Aaron Becker, UH, Wolfram Player example

• A*-RRT

• Informed RRT*, Real-Time RRT*, Theta*-RRT, etc.

Rapidly Exploring Random Trees (RRT) - Variations

Khatib, 1986

Planning using Potential Fields

• Robot is treated as a point under the influence of a (continuous)
artificial potential field

• Robot movement becomes similar to a ball rolling down a hill

Khatib, Stanford

Planning using Potential Fields

• The goal creates an attractive force
• Modeled as a spring
• Hooke’s law: F = -kX
• “Parabolic attractor”
• 𝑈𝑈𝑟𝑟𝑡𝑡𝑡𝑡 𝑞𝑞 = 𝑘𝑘𝑟𝑟𝑡𝑡𝑡𝑡(𝑞𝑞 − 𝑞𝑞𝑑𝑑𝑔𝑔𝑟𝑟𝑔𝑔)2

• 𝐹𝐹𝑟𝑟𝑡𝑡𝑡𝑡 𝑞𝑞 = −𝛻𝛻𝑈𝑈𝑟𝑟𝑡𝑡𝑡𝑡 = 𝑘𝑘𝑟𝑟𝑡𝑡𝑡𝑡 𝑞𝑞 − 𝑞𝑞𝑑𝑑𝑔𝑔𝑟𝑟𝑔𝑔
• Obstacles are repulsive forces

• Modeled as charged particles
• Coulomb's law: F= k q1q2 / r2

• 𝑈𝑈𝑟𝑟𝑑𝑑𝑟𝑟 𝑞𝑞 = �0.5𝑘𝑘𝑟𝑟𝑑𝑑𝑟𝑟
1

𝜌𝜌(𝑞𝑞)
− 1

𝜌𝜌0

2

0

, 𝑣𝑣𝑖𝑖 𝜌𝜌(𝑞𝑞) ≤ 𝜌𝜌0
, 𝑣𝑣𝑖𝑖 𝜌𝜌(𝑞𝑞) ≥ 𝜌𝜌0

• 𝐹𝐹𝑟𝑟𝑑𝑑𝑟𝑟 𝑞𝑞 = �𝑘𝑘𝑟𝑟𝑑𝑑𝑟𝑟
1

𝜌𝜌(𝑞𝑞)
− 1

𝜌𝜌0

1
𝜌𝜌(𝑞𝑞)2

𝑞𝑞−𝑞𝑞𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠
𝜌𝜌(𝑞𝑞)

0

, 𝑣𝑣𝑖𝑖 𝜌𝜌(𝑞𝑞) ≤ 𝜌𝜌0
, 𝑣𝑣𝑖𝑖 𝜌𝜌(𝑞𝑞) ≥ 𝜌𝜌0

Planning using Potential Fields

• Goal generates attractive force
• Modeled as a spring
• Hooke’s law: F = -kX

• Obstacle are repulsive forces
• Modeled as charged particles
• Coulomb's law: F= k q1q2 / r2

• Model navigation as the sum of forces on the robot
• The overall potential field

• 𝑈𝑈 𝑞𝑞 = 𝑈𝑈𝑑𝑑𝑔𝑔𝑟𝑟𝑔𝑔 𝑞𝑞 + ∑𝑈𝑈𝑔𝑔𝑜𝑜𝑠𝑠𝑡𝑡𝑟𝑟𝑜𝑜𝑔𝑔𝑑𝑑𝑠𝑠(𝑞𝑞)
• Robot motion is proportional to induced force

• F(q) = −𝛻𝛻𝑈𝑈(𝑞𝑞)
• e.g. 2 DOF robot will experience

• 𝐹𝐹(𝑞𝑞) = −𝛻𝛻𝑈𝑈(𝑞𝑞) = 𝜕𝜕𝑈𝑈
𝜕𝜕𝑑𝑑

, 𝜕𝜕𝑈𝑈
𝜕𝜕𝜕𝜕

Planning using Potential Fields

• Goal generates attractive force
• Modeled as a spring
• Hooke’s law: F = -kX

• Obstacle are repulsive forces
• Modeled as charged particles
• Coulomb's law: F= k q1q2 / r2

• Model navigation as the sum of forces on the robot
• Pitfalls / local minima

• U-shaped obstacles
• Long walls
• Solutions

• Incorporate high-level planner
• Incorporate procedural planner
• Adapt the field to have gradual repulsion
• Adding stochasticity

Modelling path planning as a graph search
problem

Real world Configuration
Space

Map
Representation

Graph
Search

Graph
Construction

• Breadth first
• Depth first
• Dijstra
• A*

https://pythonrobotics.readthedocs.io/en/latest/modules
/path_planning.html#basic-rrt

Global Motion Planning with Maps

https://pythonrobotics.readthedocs.io/en/latest/modules/path_planning.html#basic-rrt

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Modelling path planning as a graph search problem
	Graph Construction
	Topological Maps
	Fixed Cell Decomposition
	Trapezoidal Cell Decomposition
	Visibility Graphs
	Visibility Graphs
	Visibility Graphs
	Visibility Graphs
	Visibility Graphs
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Rapidly Exploring Random Trees (RRT) �– Uniform/biased sampling
	Rapidly Exploring Random Trees (RRT)
	Rapidly Exploring Random Trees (RRT)
	Rapidly Exploring Random Trees (RRT) - Considerations
	Rapidly Exploring Random Trees (RRT) - Variations
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Modelling path planning as a graph search problem

