ECE 4960

Prof. Kirstin Hagelskjær Petersen

kirstin@cornell.edu

(slides adapted from Vivek Thangavelu)

1

Fast Robots

Markov Processes

& Bayes Filter

Recap

- Random variable
 - $X: \Omega \to \mathbb{R}$
- The probability that the random variable X has value x:
 - P(X = x) or p(x)
- Probabilities sum to 1
 - $\sum_{x} P(X = x) = 1$
- Probabilities are always greater than 0
 - $P(X=x) \ge 0$
- Joint distribution Y
 - p(x, y) = P(X = x and Y = y)
- Conditional probability
 - $p(x|y) = \frac{p(x,y)}{p(y)}$

Independence

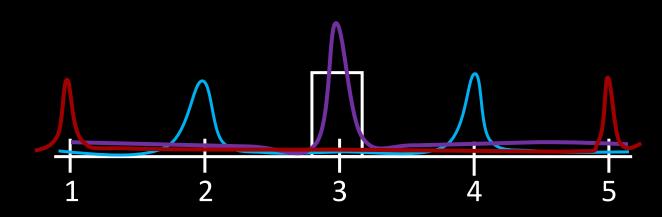
•
$$p(x,y) = p(x)p(y)$$

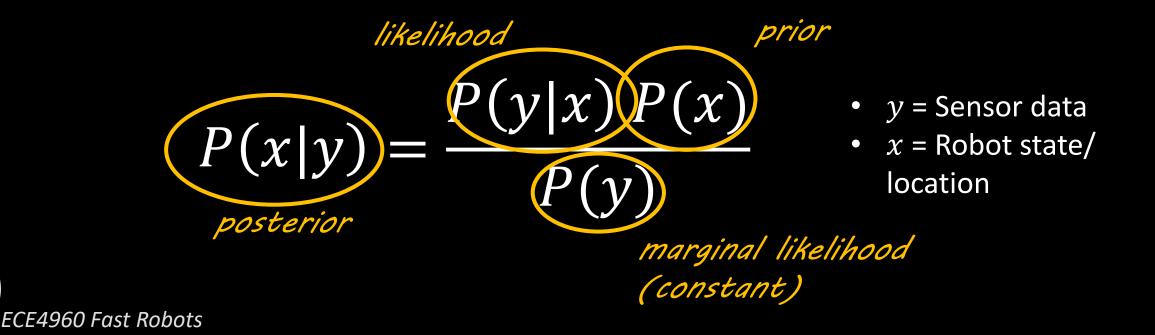
•
$$p(x|y) = p(x) = \frac{p(x,y)}{p(y)}$$

- If X and Y are conditionally independent given
 Z=z, then
 - p(x, y|z) = p(x|z)p(y|z)
- Marginal probability
 - $p(x) = \sum_{y} p(x|y)p(y)$

Bayesian Inference

- Lost robot example
 - p(X₀ = 1 or 2 or 3 or 4 or 5) = 1/5
 - p(x|y) can be hard to compute
 - What is p(y|x)?
 - If Y=1, where are you most likely to be?
 - If Y=0, where are you most likely to be?
 - If Y=2, where are you most likely to be?

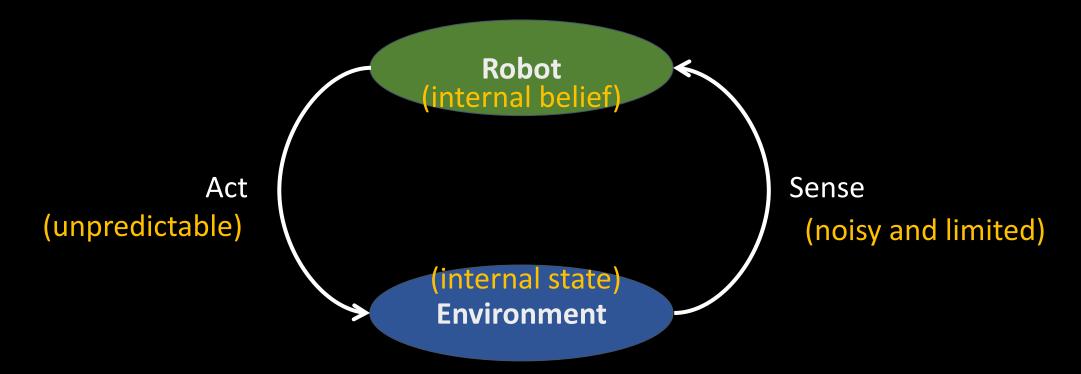




Robot-Environment Interaction

4

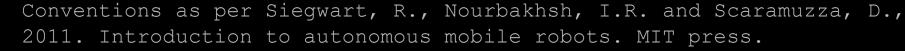
Robot-Environment Interaction



- Two fundamental types of interaction between a robot and its environment:
 - Sensor Measurements/Observations
 - Control Actions

Robot-Environment Model

- Helps us express a robot-environment interaction using probability
 - Typically modeled as a discrete time system
 - The state at time t will be denoted by as x_t
 - A sensor measurement at time t will be denoted as z_t
 - A control action will be denoted by u_t
 - Induces a transition from state x_{t-1} to x_t



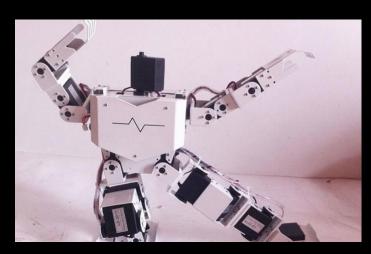
6

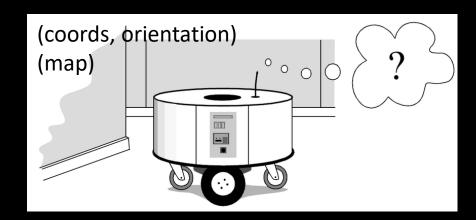
Robot-Environment Model

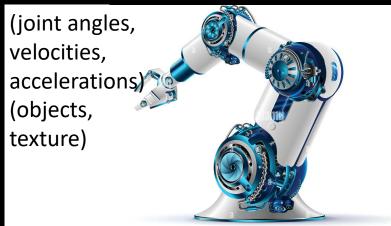
- (Arbitrary) Assumptions
 - The robot executes a control action u_t first and then takes a measurement z_t
 - There is one control action per time step t
 - Control actions include a legal action "do-nothing"
 - There is only one measurement z per time step t
 - Shorthand Notation: $x_{t1:t2} = x_{t1}$, x_{t1+1} , x_{t1+2} , ..., x_{t2}

Robot State

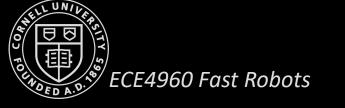
- The state, x, includes:
 - Robot Specific:
 - Pose, Velocity, Sensor status, etc.
 - Environment Specific:
 - Static variables
 - location of walls
 - Dynamic variables
 - Whereabouts of people in the vicinity of the robot
 - …context-specific







8



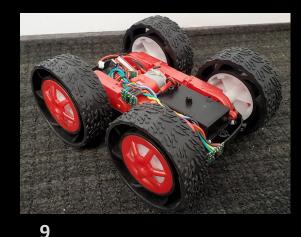
Sensor Measurements/Observations

- Z_t
 - Tend to increase the robot's knowledge

Control Actions

balance

- u_t
 - ...change the state of the world
 - carry information about the change of the robot state in the time interval (t-1:t]
 - Tends to induce loss of knowledge



Probabilistic Generative Laws

- The evolution of state and measurements is governed by probabilistic laws
 - State: How is x_t generated stochastically?
 - Measurements: How is z_t generated stochastically?

State Generation

- x_t depends on $x_{0:t-1}$, $z_{1:t-1}$ and $u_{1:t}$

 $p(x_t | x_{0:t-1}, z_{1:t-1}, u_{1:t})$

...intractable!

Markov Assumption

Markov Assumption

The Markov assumption postulates that past and future data are independent if one knows the current state

 A stochastic model/process that obeys the Markov assumption is a Markov model

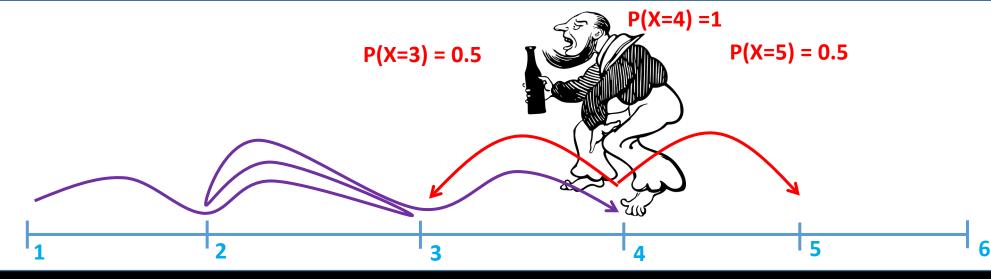
???

- (This does not mean that x_t is deterministic based on x_{t-1})
- Iff we can model our robot as a Markov process...
 - We can recursively estimate x_t using
 - X_{t-1}, Z_t, U_t
 - But not X_{0:t-1}, Z_{1:t-1}, U_{1:t} !
 - Tractable!

Andrey Markov (1856–1922) was a Russian mathematician best known for his work on stochastic processes

Drunkard's walk!

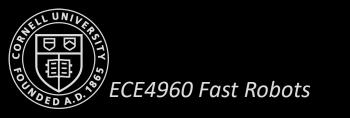
- Random walk on the number line
 - At each step, the position may change by +1 or -1 with equal probability
- The transition probabilities depend only on the current position, not on the manner in which the position was reached
- This is a Markov Process!



Coin Purse

- Contents
 - 5 quarters (25¢)
 - 5 dimes (10¢)
 - 5 nickels (5¢)
- Draw coins randomly, one at a time and place them on a table
- Example:
 - X_n = total value of coins on the table after n draws
 - The sequence $\{X_n : n \in \mathbb{N}\}$ is a stochastic process

- First, I draw a nickel
- What is $X_1 = 5$ ¢
- Next, I draw a dime
- What is $X_2 = 15c$



14

Coin Purse

- Contents
 - 5 quarters (25¢)
 - 5 dimes (10¢)
 - 5 nickels (5¢)
- Draw coins randomly, one at a time and place them on a table
- Example:
 - X_n = total value of coins on the table after n draws
 - The sequence $\{X_n : n \in \mathbb{N}\}$ is a stochastic process

- Suppose...
 - In the first six draws, you pick all 5 nickels and 1 quarter
 - $X_6 = 50$ ¢
- What can we say about X_7 ?
 - $P(X_7 \ge 0.55) = 1$
- Can you do better?
 - Can you draw a nickel in the 7th draw?
 - $P(X_7 \ge 0.6) = 1$
- Exercise
 - Is this a Markov Model?
 - If not, can you tweak the definition of X_n to make it one?

Coin Purse

- Contents
 - 5 quarters (25¢)
 - 5 dimes (10¢)
 - 5 nickels (5¢)
- Draw coins randomly, one at a time and place them on a table
- Example:
 - X_n = total value of coins on the table after n draws
 - The sequence $\{X_n : n \in \mathbb{N}\}$ is a stochastic process

- Markov model
 - X_n = {number of quarters, number of dimes, number of nickels} drawn
 - First you pick a nickel
 - $X_1 = \{0,0,1\}$
 - $X_6 = \{1, 0, 5\}$
 - Now, what can you say about X_7 ?
 - $p(X_7 \ge 0.6) = 1$
- State space: 6*6*6 = 216 possible states
- ...but independent of the number of draws

Robot-Environment Model

State Generative Model

- x_t is generated stochastically from the state x_{t-1}
- x_t depends on $x_{0:t-1}$, $z_{1:t-1}$ and $u_{1:t}$

 $p(x_t | x_{0:t-1}, z_{1:t-1}, u_{1:t-1})$

If state x_t is modeled under the Markov Assumption, then

 $p(x_t \mid x_{0:t-1}, z_{1:t-1}, u_{1:t-1}) = p(x_t \mid x_{t-1}, u_t)$ (conditional independence)

- Knowledge of only the previous state $\boldsymbol{x}_{t\text{-}1}$ and control \boldsymbol{u}_t is sufficient to predict \boldsymbol{x}_t

Tractable!

Measurement Generative Model

• Similarly, the process by which measurements are generated are of importance

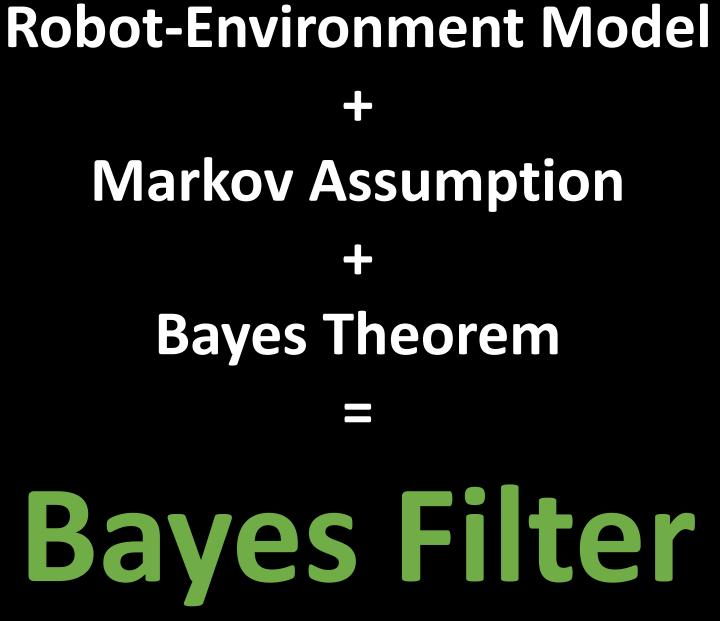
 $p(z_t | x_{0:t}, z_{1:t-1}, u_{1:t})$

• If x_t conforms to the **Markov Assumption**, then

 $p(z_t|x_{0:t}, z_{1:t-1}, u_{1:t}) = p(z_t|x_t)$

(conditional independence)

- The state x_t is sufficient to predict the (potentially noisy) measurements
- Knowledge of any other variable, such as past measurements, controls, or even past states, is irrelevant under the Markov Assumption



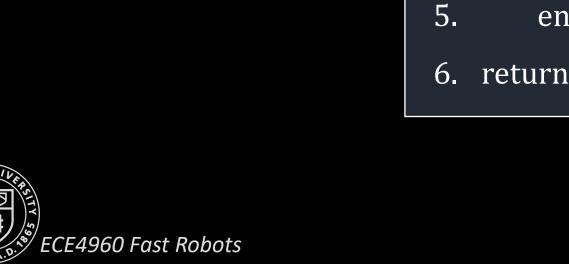
Robot Belief

- Probabilistic robotics represents beliefs through *posterior conditional probability distributions*
 - probability distributions over state variables conditioned on available data
 - The belief of a robot is the posterior distribution over the state of the environment, given all past sensor measurements and all past controls

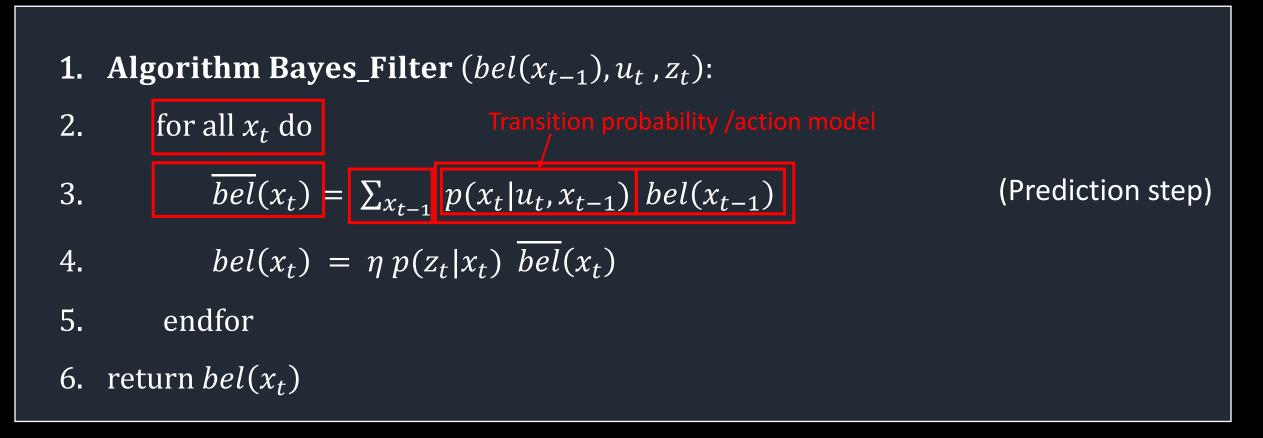
• Belief over a state variable
$$x_t$$
 is denoted by $bel(x_t)$:
 $bel(x_t) = p(x_t|z_{1:t}, u_{1:t})$

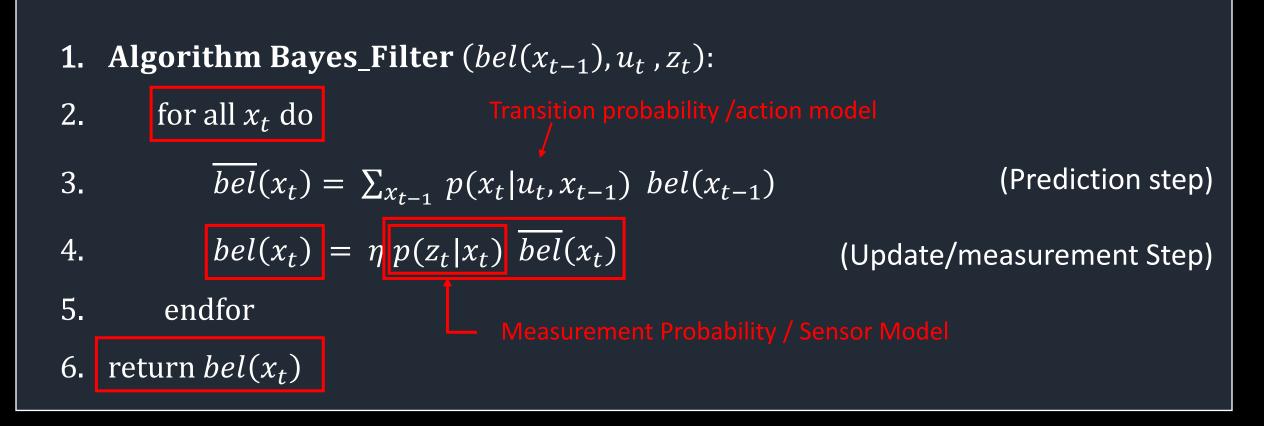
• The (prior) belief is the belief before incorporating the latest measurement z_t $\overline{bel}(x_t) = p(x_t | z_{1:t-1}, u_{1:t})$

 It is a recursive algorithm that calculates the belief distribution from measurements and control data



1. Algorithm Bayes_Filter
$$(bel(x_{t-1}), u_t, z_t)$$
:
2. for all x_t do
3. $\overline{bel}(x_t) = \sum_{x_{t-1}} p(x_t | u_t, x_{t-1}) \ bel(x_{t-1})$
4. $bel(x_t) = \eta \ p(z_t | x_t) \ \overline{bel}(x_t)$
5. endfor
6. return $bel(x_t)$





Kalman Filter Implementation

Kalman Filter (μ (t-1), Σ (t-1), u(t), z(t))

- 1. $\mu_{p}(t) = A \mu(t-1) + B u(t)$
- 2. $\Sigma_{p}(t) = A \Sigma(t-1) A^{T} + \Sigma_{u}$
- 3. $K_{KF} = \Sigma_p(t) C^T (C \Sigma_p(t) C^T + \Sigma_z)^{-1}$
- 4. $\mu(t) = \mu_p(t) + K_{KF} (z(t) C \mu_p(t))$
- 5. $\Sigma(t) = (I K_{KF} C) \Sigma_{p}(t)$
- 6. Return μ (t) and Σ (t)

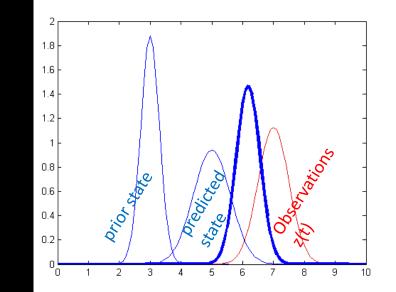
prediction

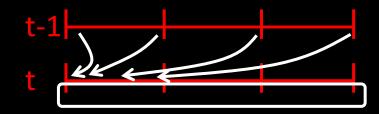
update

$$\Sigma_{u} = \begin{bmatrix} \sigma_{1}^{2} & 0 & 0 \\ 0 & \sigma_{2}^{2} & 0 \\ 0 & 0 & \sigma_{3}^{2} \end{bmatrix}, \Sigma_{z} = \begin{bmatrix} \sigma_{4}^{2} & 0 \\ 0 & \sigma_{5}^{2} \end{bmatrix}$$

ECE4960 Fast Robots

State estimate: $\mu(t)$ State uncertainty: $\Sigma(t)$ Process noise: Σ_u Kalman filter gain: K_{KF} Measurement noise: Σ_z





- **1.** Algorithm Bayes_Filter $(bel(x_{t-1}), u_t, z_t)$:
- 2. for all x_t do

3.
$$\overline{bel}(x_t) = \sum_{x_{t-1}} p(x_t | u_t, x_{t-1}) \ bel(x_{t-1})$$

 $bel(x_t) = \eta p(z_t | x_t) \overline{bel}(x_t)$

5. endfor

4.

6. return $bel(x_t)$

Dynamical Stochastic Model

- $p(x_t|x_{t-1}, u_t)$
 - It is known as the state transition probability
 - It specifies how the robot state evolves over time as a function of robot controls U_t
- $p(z_t|x_t)$
 - It is known as the measurement probability
 - It specifies how the measurements are generated from the robot state x_t _
 - Informally, you may think of measurements as noisy projections of the state
- Remember that these predictions are stochastic and not deterministic ECE4960 Fast Robots

Bayes Filter - Initial Conditions

• To compute the posterior belief recursively, the algorithm requires an initial belief $bel(x_0)$ at time t = 0

- **1.** Algorithm Bayes_Filter $(bel(x_{t-1}), u_t, z_t)$:
- 2. for all x_t do

3.
$$\overline{bel}(x_t) = \sum_{x_{t-1}} p(x_t | u_t, x_{t-1}) \ bel(x_{t-1})$$
 (Prediction step)

4.
$$bel(x_t) = \eta p(z_t|x_t) \ \overline{bel}(x_t)$$

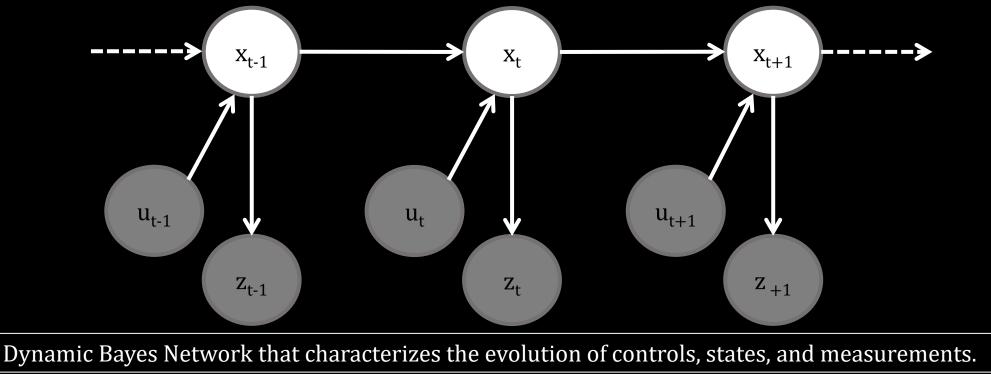
(Update/measurement Step)

- 5. endfor
- 6. return $bel(x_t)$

Bayes Filter - Initial Conditions

- To compute the posterior belief recursively, the algorithm requires an initial belief $bel(x_0)$ at time t = 0
- If we know the initial state with absolute certainty, we can initialize a point mass distribution that centers all probability mass on the correct value of x₀ and assign zero everywhere else
- If we are entirely ignorant of the initial state, we can initialize it with a uniform probability distribution over all the possible states

Dynamical Stochastic Model



- $p(x_t | x_{t-1}, u_t)$ and $p(z_t | x_t)$ together describe the **dynamical stochastic system** of the robot and its environment
- Such a generative model is also known as a Hidden Markov Model (HMM) or
 Dynamic Bayes Network (DBN)

References

- 1. Thrun, Sebastian, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT press, 2005.
- 2. http://gki.informatik.uni-freiburg.de/teaching/ws0607/advanced/recordings/BayesFiltering.pdf
- 3. http://home.deib.polimi.it/restelli/MyWebSite/pdf/E05_h.pdf
- 4. https://en.wikipedia.org/wiki/Markov_chain
- 5. https://en.wikipedia.org/wiki/Markov model

6. Image Sources:

- a. <u>https://blog.robotiq.com/a-brief-history-of-robots-in-manufacturing</u>
- b. https://northwesturbanist.files.wordpress.com/2015/01/20151104_082523.jpg
- c. https://expresswriters.com/is-the-dress-blue-black-white-or-gold-how-it-went-viral/
- d. <u>https://en.wikipedia.org/wiki/Andrey_Markov</u>

