
ECE 4960

Fast Robots
Markov Processes

&
Bayes Filter

ECE4960 Fast Robots 1

Prof. Kirstin Hagelskjær Petersen
kirstin@cornell.edu

(slides adapted from Vivek Thangavelu)

mailto:kirstin@cornell.edu


ECE4960 Fast Robots 2

• Random variable
• 𝑋𝑋: Ω → ℝ

• The probability that the random variable X has value x:
• 𝑃𝑃 𝑋𝑋 = 𝑥𝑥 𝑜𝑜𝑜𝑜 𝑝𝑝(𝑥𝑥)

• Probabilities sum to 1
• ∑𝑥𝑥 𝑃𝑃 𝑋𝑋 = 𝑥𝑥 = 1

• Probabilities are always greater than 0
• 𝑃𝑃(𝑋𝑋=𝑥𝑥) ≥0

• Joint distribution Y
• 𝑝𝑝 𝑥𝑥,𝑦𝑦 = 𝑃𝑃(𝑋𝑋 = 𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎 𝑌𝑌 = 𝑦𝑦)

• Conditional probability
• 𝑝𝑝 𝑥𝑥 𝑦𝑦 = 𝑝𝑝(𝑥𝑥,𝑦𝑦)

𝑝𝑝(𝑦𝑦)

Recap

• Independence
• 𝑝𝑝 𝑥𝑥,𝑦𝑦 = 𝑝𝑝 𝑥𝑥 𝑝𝑝(𝑦𝑦)

• 𝑝𝑝 𝑥𝑥 𝑦𝑦 = 𝑝𝑝 𝑥𝑥 =
𝑝𝑝(𝑥𝑥,𝑦𝑦)
𝑝𝑝(𝑦𝑦)

• If X and Y are conditionally independent given 
Z=z, then
• 𝑝𝑝 𝑥𝑥,𝑦𝑦|𝑧𝑧 = 𝑝𝑝 𝑥𝑥|𝑧𝑧 𝑝𝑝(𝑦𝑦|𝑧𝑧)

• Marginal probability
• 𝑝𝑝 𝑥𝑥 = ∑𝑦𝑦 𝑝𝑝 𝑥𝑥 𝑦𝑦 𝑝𝑝(𝑦𝑦)
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Bayesian Inference

1 2 3 4 5

𝑃𝑃 𝑥𝑥|𝑦𝑦 =
𝑃𝑃 𝑦𝑦|𝑥𝑥 𝑃𝑃(𝑥𝑥)

𝑃𝑃(𝑦𝑦)

prior

posterior

likelihood

marginal likelihood
(constant)

• 𝑦𝑦 = Sensor data
• 𝑥𝑥 = Robot state/ 

location

• Lost robot example
• p(X0 = 1 or 2 or 3 or 4 or 5) = 1/5
• p(x|y) can be hard to compute
• What is p(y|x)?
• If Y=1, where are you most likely to be?
• If Y=0, where are you most likely to be?
• If Y=2, where are you most likely to be?



Robot-Environment 
Interaction

4
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• Two fundamental types of interaction between a robot and its environment:

− Sensor Measurements/Observations 

− Control Actions

Robot-Environment Interaction

5

Environment

Robot

Act Sense

(internal state)
(noisy and limited)

(internal belief)

(unpredictable)
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• Helps us express a robot-environment interaction using probability

• Typically modeled as a discrete time system

• The state at time t will be denoted by as xt

• A sensor measurement at time t will be denoted as zt

• A control action will be denoted by ut

• Induces a transition from state xt-1 to xt

Robot-Environment Model

6

Conventions as per Siegwart, R., Nourbakhsh, I.R. and Scaramuzza, D., 
2011. Introduction to autonomous mobile robots. MIT press.
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• (Arbitrary) Assumptions 

• The robot executes a control action ut first and then takes a measurement zt

• There is one control action per time step t

• Control actions include a legal action “do-nothing ”

• There is only one measurement z per time step t

• Shorthand Notation: xt1:t2 = xt1 , xt1+1 , xt1+2  , . . . ,  xt2

Robot-Environment Model

7



ECE4960 Fast Robots

• The state, x, includes:
• Robot Specific:

- Pose, Velocity, Sensor status, etc.

• Environment Specific:
- Static variables

- location of walls

- Dynamic variables 
- Whereabouts of people in the vicinity of the robot

• …context-specific

Robot State

8

(coords, orientation)
(map) 

(joint angles, 
velocities, 
accelerations)
(objects, 
texture)
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• zt

• Tend to increase the robot’s knowledge

Sensor Measurements/Observations 

9

• ut

• …change the state of the world 

• carry information about the change of the robot state in the time interval (t-1:t]
• Tends to induce loss of knowledge

Control Actions balance
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• The evolution of state and measurements is governed by probabilistic laws

• State: How is xt generated stochastically?

• Measurements: How is zt generated stochastically?

Probabilistic Generative Laws

10

• xt depends on x0:t-1, z1:t-1 and u1:t

State Generation

p( xt | x0:t-1, z1:t-1, u1:t)

…intractable!



Markov Assumption

11
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The Markov assumption postulates that past and future data are 
independent if one knows the current state

• A stochastic model/process that obeys the Markov assumption 
is a Markov model

• (This does not mean that xt is deterministic based on xt-1)

• Iff we can model our robot as a Markov process…

• We can recursively estimate xt using 

• xt-1, zt, ut

• But not x0:t-1, z1:t-1, u1:t !
• Tractable!

Markov Assumption

12

Andrey Markov (1856–1922) was a 
Russian mathematician best known 
for his work on stochastic processes 

???
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• Random walk on the number line

• At each step, the position may change by +1 or −1 with equal probability

• The transition probabilities depend only on the current position, not on the manner in 
which the position was reached

• This is a Markov Process!

Drunkard’s walk!

13

1 2 3 4 5 6

P(X=4) =1
P(X=5) = 0.5P(X=3) = 0.5
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• Contents
• 5 quarters (25¢)
• 5 dimes (10¢)
• 5 nickels (5¢)

• Draw coins randomly, one at a time and 
place them on a table 

• Example:
• Xn = total value of coins on the table 

after n draws
• The sequence { 𝑋𝑋𝑛𝑛∶ 𝑎𝑎 𝜖𝜖 ℕ } is a 

stochastic process

Coin Purse

14

• First, I draw a nickel
• What is 𝑋𝑋1=?
• Next, I draw a dime
• What is 𝑋𝑋2=?

5¢

15¢

𝑋𝑋1 𝑋𝑋2 𝑋𝑋3
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• Contents
• 5 quarters (25¢)
• 5 dimes (10¢)
• 5 nickels (5¢)

• Draw coins randomly, one at a time and 
place them on a table 

• Example:
• Xn = total value of coins on the table 

after n draws
• The sequence { 𝑋𝑋𝑛𝑛∶ 𝑎𝑎 𝜖𝜖 ℕ } is a 

stochastic process

Coin Purse

15

• Suppose…
• In the first six draws, you pick all 5 

nickels and 1 quarter
• 𝑋𝑋6= 50¢

• What can we say about 𝑋𝑋7?
• 𝑃𝑃(𝑋𝑋7≥ 0.55) = 1

• Can you do better?
• Can you draw a nickel in the 7th

draw?
• 𝑃𝑃(𝑋𝑋7≥ 0.6) = 1

• Exercise
• Is this a Markov Model?
• If not, can you tweak the definition 

of Xn to make it one?
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• Contents
• 5 quarters (25¢)
• 5 dimes (10¢)
• 5 nickels (5¢)

• Draw coins randomly, one at a time and 
place them on a table 

• Example:
• Xn = total value of coins on the table 

after n draws
• The sequence { 𝑋𝑋𝑛𝑛∶ 𝑎𝑎 𝜖𝜖 ℕ } is a 

stochastic process

Coin Purse

16

• Markov model
• Xn = {number of quarters, number of 

dimes, number of nickels} drawn
• First you pick a nickel

• 𝑋𝑋1 = {0,0,1}
• 𝑋𝑋6 = {1,0,5}

• Now, what can you say about 𝑋𝑋7?
• 𝑝𝑝(𝑋𝑋7 ≥ 0.6) = 1

• State space: 6*6*6 = 216 possible states
• …but independent of the number of 

draws



Robot-Environment Model

17
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• xt is generated stochastically from the state xt-1

• xt depends on x0:t-1, z1:t-1 and u1:t

p(xt | x0:t-1, z1:t-1, u1:t-1)

• If state xt is modeled under the Markov Assumption, then

(conditional independence) 

• Knowledge of only the previous state xt-1 and control ut is sufficient to predict xt

State Generative Model

18

p(xt | x0:t-1, z1:t-1, u1:t-1) = p(xt | xt-1,ut) 

Tractable!
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• Similarly, the process by which measurements are generated are of importance

p(zt|x0:t, z1:t-1, u1:t)

• If xt conforms to the Markov Assumption, then

p(zt|x0:t, z1:t-1, u1:t) = p(zt|xt)

(conditional independence)

• The state xt is sufficient to predict the (potentially noisy) measurements

• Knowledge of any other variable, such as past measurements, controls, or even past 
states, is irrelevant under the Markov Assumption 

Measurement Generative Model

19



Robot-Environment Model
+

Markov Assumption
+

Bayes Theorem 
= 

Bayes Filter
20
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• Probabilistic robotics represents beliefs through posterior conditional probability 
distributions

• probability distributions over state variables conditioned on available data

• The belief of a robot is the posterior distribution over the state of the environment, 
given all past sensor measurements and all past controls

• Belief over a state variable 𝑥𝑥𝑡𝑡 is denoted by 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 :
𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑧𝑧1:𝑡𝑡,𝑢𝑢1:𝑡𝑡)

• The (prior) belief is the belief before incorporating the latest measurement 𝑧𝑧𝑡𝑡
𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑧𝑧1:𝑡𝑡−1,𝑢𝑢1:𝑡𝑡)

Robot Belief

21
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• It is a recursive algorithm 
that calculates the belief 
distribution from 
measurements and control 
data

Bayes Filter

xt-1

1. 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁_𝐅𝐅𝐀𝐀𝐀𝐀𝐀𝐀𝐁𝐁𝐀𝐀 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡−1 ,𝑢𝑢𝑡𝑡 , 𝑧𝑧𝑡𝑡 :

2. for all 𝑥𝑥𝑡𝑡 do

3. 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = ∑𝑥𝑥𝑡𝑡−1 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑢𝑢𝑡𝑡 , 𝑥𝑥𝑡𝑡−1) 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡−1

4. 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = 𝜂𝜂 𝑝𝑝(𝑧𝑧𝑡𝑡|𝑥𝑥𝑡𝑡) 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡
5. endfor

6. return 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡

22
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Bayes Filter

xt-1

1. 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁_𝐅𝐅𝐀𝐀𝐀𝐀𝐀𝐀𝐁𝐁𝐀𝐀 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡−1 ,𝑢𝑢𝑡𝑡 , 𝑧𝑧𝑡𝑡 :

2. for all 𝑥𝑥𝑡𝑡 do

3. 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = ∑𝑥𝑥𝑡𝑡−1 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑢𝑢𝑡𝑡 , 𝑥𝑥𝑡𝑡−1) 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡−1

4. 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = 𝜂𝜂 𝑝𝑝(𝑧𝑧𝑡𝑡|𝑥𝑥𝑡𝑡) 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡
5. endfor

6. return 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡

23

Transition probability /action model

(Prediction step)
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Bayes Filter

xt-1

1. 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁_𝐅𝐅𝐀𝐀𝐀𝐀𝐀𝐀𝐁𝐁𝐀𝐀 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡−1 ,𝑢𝑢𝑡𝑡 , 𝑧𝑧𝑡𝑡 :

2. for all 𝑥𝑥𝑡𝑡 do

3. 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = ∑𝑥𝑥𝑡𝑡−1 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑢𝑢𝑡𝑡 , 𝑥𝑥𝑡𝑡−1) 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡−1

4. 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = 𝜂𝜂 𝑝𝑝(𝑧𝑧𝑡𝑡|𝑥𝑥𝑡𝑡) 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡
5. endfor

6. return 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡
Measurement Probability / Sensor Model

24

Transition probability /action model

(Prediction step)

(Update/measurement Step)
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Kalman Filter ( μ(t-1), Σ(t-1), u(t), z(t) ) 
1. μp(t) = A μ(t-1) + B u(t)
2. Σp (t) = A Σ(t-1) AT + Σu

3. KKF = Σp(t) CT ( C Σp(t) CT + Σz)-1

4. μ(t)= μp(t) +  KKF ( z(t) - C μp(t) )
5. Σ(t) =( I – KKF C) Σp(t)
6. Return μ(t) and Σ(t)

update

prediction

Kalman Filter Implementation

Σ𝑢𝑢 =
𝜎𝜎12 0 0
0 𝜎𝜎22 0
0 0 𝜎𝜎32

,Σ𝑧𝑧 = 𝜎𝜎42 0
0 𝜎𝜎52

State estimate: μ(t)
State uncertainty: Σ(t)
Process noise: Σu
Kalman filter gain: KKF
Measurement noise: Σz
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Bayes Filter

xt-1

1. 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁_𝐅𝐅𝐀𝐀𝐀𝐀𝐀𝐀𝐁𝐁𝐀𝐀 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡−1 ,𝑢𝑢𝑡𝑡 , 𝑧𝑧𝑡𝑡 :

2. for all 𝑥𝑥𝑡𝑡 do

3. 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = ∑𝑥𝑥𝑡𝑡−1 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑢𝑢𝑡𝑡 , 𝑥𝑥𝑡𝑡−1) 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡−1

4. 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = 𝜂𝜂 𝑝𝑝(𝑧𝑧𝑡𝑡|𝑥𝑥𝑡𝑡) 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡
5. endfor

6. return 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡

26

(Prediction step)

(Update/measurement Step)

t-1

t
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● 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1,𝑢𝑢𝑡𝑡 )

− It is known as the state transition probability 

− It specifies how the robot state evolves over time as a function of robot controls 
ut

● 𝑝𝑝(𝑧𝑧𝑡𝑡|𝑥𝑥𝑡𝑡)

− It is known as the measurement probability

− It specifies how the measurements are generated from the robot state xt

− Informally, you may think of measurements as noisy projections of the state

• Remember that these predictions are stochastic and not deterministic

Dynamical Stochastic Model

27
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• To compute the posterior belief recursively, the algorithm requires an initial belief 
𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥0 at time 𝑡𝑡 = 0

Bayes Filter - Initial Conditions

28
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Bayes Filter

xt-1

1. 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁_𝐅𝐅𝐀𝐀𝐀𝐀𝐀𝐀𝐁𝐁𝐀𝐀 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡−1 ,𝑢𝑢𝑡𝑡 , 𝑧𝑧𝑡𝑡 :

2. for all 𝑥𝑥𝑡𝑡 do

3. 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = ∑𝑥𝑥𝑡𝑡−1 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑢𝑢𝑡𝑡 , 𝑥𝑥𝑡𝑡−1) 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡−1

4. 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = 𝜂𝜂 𝑝𝑝(𝑧𝑧𝑡𝑡|𝑥𝑥𝑡𝑡) 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡
5. endfor

6. return 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡

29

(Prediction step)

(Update/measurement Step)
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• To compute the posterior belief recursively, the algorithm requires an initial belief 
𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥0 at time 𝑡𝑡 = 0

• If we know the initial state with absolute certainty, we can initialize a point mass 
distribution that centers all probability mass on the correct value of 𝑥𝑥0 and assign zero 
everywhere else

• If we are entirely ignorant of the initial state, we can initialize it with a uniform 
probability distribution over all the possible states

Bayes Filter - Initial Conditions

30
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● p(xt | xt-1, ut) and  p(zt | xt) together describe the dynamical stochastic system of the 
robot and its environment

• Such a generative model is also known as a Hidden Markov Model (HMM) or 
Dynamic Bayes Network (DBN)

Dynamical Stochastic Model

31

xt 

ut 

zt

xt+1 

ut+1 

z +1

xt-1 

ut-1 

zt-1 

Dynamic Bayes Network that characterizes the evolution of controls, states, and measurements.
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