ECE 4960

Prof. Kirstin Hagelskjær Petersen <u>kirstin@cornell.edu</u> Vivek Thangavelu vs353@cornell.edu

1

Fast Robots Lab 10 (Flipped classroom)

Lecture overview

- Please team up...
- Mid-semester feedback
 - Suggestions for improvements
- Lab 10 (Flipped classroom)
 - How many people have the simulator installed on their laptops?

Course Midway Feedback

- 16 students (8 ugrad/8 M.Eng.)
 - Pretty positive (thank you!!)
 - Clarify how the material extends to industry
 - Expand on how the weekly lab is supposed to be done
 - More small group discussions
 - Support Windows 11....
 - 6/16 felt lectures are progressing too fast
 - 10/16 preferred more open-ended labs
 - Workload less sporadic
 - Shorter assignments

Ideas for improvement?

- What would you cut/edit?...
- Our ideas...
 - Lab 1-2 Artemis and Bluetooth
 - Add arrays/debugging scripts
 - Lab 3-4 Sensors and car characterization
 - 7 new soldering stations
 - Split lab 3 into two weeks, and skip lab 4
 - Just one sensor?
 - Avoid some soldering
 - Lab 5 Open loop
 - Lab 6 PID
 - Lab 7 Kalman Filters
 - Could give you the code and just have you tune the KF
 - Lab 8 Stunts
 - Lab 9 Mapping

• Please consider teaming up...

- Strengths / weaknesses
- Time commitment
- Weekly availability

Also prelims...

Lab 10 – Simulation Software

- Multiple processes
 - Simulator
 - Robot
 - Motion
 - Ground truth
 - YAML (map and other parameters)
 - Plotter
 - Controller
 - Get odometry pose, get and plot sensor data, move the robot, etc.
- Why do we bother with the simulator?
 - Helpful for debugging the Bayes Filter
 - Helpful for evaluating implication of accuracy
 - Can be used to also debug the real robot

Communicates with

them using pipes

Plotter

Lab 10 - Simulation

Commander

Functions to interact with the simulator and the plotter

VirtualRobot

Functions to interact with the virtual robot in the simulator

Mapper

Functions related to grid maps, discretization and ray tracing

Lab 11 - Localization on the virtual robot

Grid Localization Code

Lab 12 - Pure localization on the virtual robot

Commander	ArtemisBLE	Mapper	Trajectory		
Functions to interact with the simulator and the plotter	Controller Functions to interact with the real robot	Functions related to grid maps, discretization and ray tracing	Encodes a pre-planned collision free trajectory to be executed by the virtual robot		
			(Prediction class		
RealRobot		BaseLocalization	is not used)		
Functions to interact with the real robot.		Variables and helper functions for grid localization			
		Localization			
		Grid Localization Code			

Lab 13 - Localization and planning on the virtual robot

Commander	ArtemisBLE	Mapper	Trajectory
Functions to interact with the simulator and the plotter	Controller Functions to interact with the real robot	Functions related to grid maps, discretization and ray tracing	Encodes a pre-planned collision free trajectory to be executed by the real robot
RealRobot		BaseLocalization	
Functions to interact with the real robot.		Variables and helper functions for grid localization	
		Localization	
		Grid Localization Code	

- Prelab
 - Upgrade to Python 3.10 (if you haven't already)
 - ...Reinstall the packages from Lab 2
 - Install dependencies
 - Install Box2D
 - Simulation base code

- Task 1: Control and plotting
 - Keyboard control of robot
 - H brings up a key-map in the plotter
 - Programmatically control your robot and visualize the trajectory in the plotter

- Task 2: Open loop control
 - Make your robot drive in a square loop
 - Compare ground truth and odometry
 - Compare across computers (print ground truth)
 - Trajectory Plotter Flatland - Python Box2D \times Flatland Combined EPS 60 1.6 Press h for keymap 0.8 -0.4 Plotted Points = 12 Reset (r) Odom Ground Truth Belief Map Dist.

- Why do think solutions differ across computers?
 - System's load, specs, rounding, etc.

- Task 3: Closed loop control and obstacle avoidance
 - Design a simple controller in Jupyter to avoid obstacles
 - Suggestions?

Trajectory Plotter	K Flatland - Python Box2D	– 🗆 X
12	Flatland Combined FPS 59 Press h for keymap	
8		
4		
-2		
►		
-6		
-10 -12		
A -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 Plotted Points = 0 Reset (r) Odom Ground Truth Belief Map		

- Task 3: Closed loop control and obstacle avoidance
 - Design a simple controller in Jupyter to avoid obstacles
 - Suggestions?
- Consider...
 - Turn size and forward speed
 - How close can the virtual robot get to an obstacle without colliding?
 - Does your obstacle avoidance code always work? If not, what can you do to minimize crashes or (maybe) prevent them completely?

- Task 3: Closed loop control and obstacle avoidance
 - Design a simple controller in Jupyter to avoid obstacles
 - Suggestions?

	💽 Trajectory Plotter - 🗆 🗙					😂 Flatland - Python Box2D —	×		
	4							Flatland Combined FPS 60 Press h for keymap	
	3								
	2								
	1								
				×					
-									
4	3								
-	1								
-									
A	-8 -6	-4	-2	0	2	4	6		
	Plotted Points = 0	Reset (r)	Odom	Ground Truth	Belief	Мар	Dist.		

Logistics

• Lab 8 – Stunts

- Voting can start today Friday
- Please submit your votes by Friday April 22nd
 - <u>https://tinyurl.com/vp5wrten</u>
 - 10 points for best stunt
 - 1 point for best blooper
- Lab 9 Mapping
 - Yes! You still have an opportunity to get your map this week
 - We plan to start grading Friday
- Lab 10 Simulation
 - If you finish early, we strongly encourage you to get a head start on the Lab 11 documentation!