Prof. Kirstin Hagelskjær Petersen kirstin@cornell.edu

Fast Robots

Prof. Kirstin Hagelskjær Petersen kirstin@cornell.edu

- 1. Outcome from Survey
 - Concerns with course overlap
 - Concerns with EE/signal processing
 - Concerns with ME
 - Concerns with dynamics/controls
 - Many feel comfortable with embedded programming
 - Excited to build a fast robot
 - Excited to build a robot that works!

Prof. Kirstin Hagelskjær Petersen kirstin@cornell.edu

- 1. Outcome from Survey
- 2. EdDiscussion question regarding analog outputs

Prof. Kirstin Hagelskjær Petersen kirstin@cornell.edu

- 1. Outcome from Survey
- 2. EdDiscussion question regarding analog outputs
- 3. Intro to Sensors
 - Distance Sensors
 - Odometry and errors
- 4. Sensor fusion
- 5. Discuss Lab 2 (Vivek)
- 6. IMU
- 7. Lab 3 preparation (groups)

Prof. Kirstin Hagelskjær Petersen kirstin@cornell.edu

SENSORS

History

Shakey: Experiments in Robot Planning and Learning (1972), SRI

Sensor Classification

- Proprioceptive
 - Motor speed, wheel load, joint angles, battery voltage
- Exteroceptive
 - distance measurements, light intensity, sound amplitude
- Passive Sensors
 - Measure ambient environmental energy
 - E.g. temperature probes, microphones, light sensors
- Active Sensors
 - Senses reaction to emitted energy
 - E.g. wheel quadrature encoders, ultrasonic sensors, laser rangefinders

Classification

Туре	Sensor	Prop/Exte	Passive/Active
Tactile (contact/closeness)	Contact switches, bumpers, Break beams, proximity Capacitive	Exteroceptive Exteroceptive Exteroceptive	Passive Active Both
Wheel/motor	Brush encoders Potentiometers Optical encoders Magnetic/inductive/capacitive encoders	Proprioceptive Proprioceptive Proprioceptive Proprioceptive	Passive Passive Active Active
Active ranging	Reflectivitiy sensors, ultrasonic, laser rangefinders, optical triangulation, etc.	Exteroceptive	Active
Heading	Compass Gyroscopes	Exteroceptive Proprioceptive	Passive Passive
Ground based beacons	GPS, RF, reflective beacons	Exteroceptive	Active
Motion/speed	Doppler radar, sound	Exteroceptive	Active
Vision	CCD/CMOS	Exteroceptive	Passive

Sensor Characteristics

Name some examples

- Dynamic Range [dB]
- Range
- Resolution
- Linearity
- Bandwidth / Sampling Frequency
- Sensitivity
- Cross-sensitivity
- Accuracy
- Precision
- Error
 - Systematic
 - Random
- Power consumption
- Size, price, etc...

Prof. Kirstin Hagelskjær Petersen kirstin@cornell.edu

DISTANCE SENSORS

DIY-level Distance Sensors

LOA CORN.

Technology	Application	Pros	Cons
Amplitude- based IR	<10cm	~ 0.5 USDSmall form factor	Depends on target reflectivityDoes not work in high ambient light
IR triangulation	<1m	 Insensitive to surface color/texture/ambient light 	 ~ 10 USD Does not work in high ambient light Bulky (1.75" × 0.75" × 0.53") Low sample rate (26Hz)
IR Time of Flight	0.1 - 4m	 High sample rate (4kHz) Small form factor Insensitive to surface color/texture/ambient light 	 ~ 6.5 USD Complicated processing Low sampling frequency: 7-30Hz
Ultrasonic	0.2 – 10m	 Low cost Insensitive to ambient light and surface color Works in rain and fog 	 ~4 USD Complicated processing Resolution trade off with max range Output depends on surface/geometry/humidity Bulky, sample time (tens of milliseconds) Hard to achieve a narrow FoV
	Fast Robots		11

The Electromagnetic Spectrum

Amplitude – Based IR Distance Sensors

- Very cheap
- Very simple circuitry
- Works reasonably well for
 - Object detection
 - Break beam sensors
 - Classifying greyscale intensity at a fixed distance
 - Short-range distance sensor
- Sensitive to surface color, texture, and ambient light

VCNL4040

- \$3.34
- Range 20cm
- Ambient light sensor
- Programmable DC

Infrared IR Object Detection Sensor

Amplitude – Based IR Distance Sensors

- Very cheap
- Very simple circuitry
- Works reasonably well for
 - Object detection
 - Break beam sensors
 - Classifying greyscale intensity at a fixed distance
 - Short-range distance sensor
- Sensitive to surface color, texture, and ambient light

VCNL4040

- \$3.34
- Range 20cm
- Ambient light sensor
- Programmable DC

Amplitude – Based IR Distance Sensors

Normalized Spectral Sensitivity(Photodiodes)/Emission(Emitters) for components

Triangulation–Based IR Distance Sensors

- Very simple circuitry
- Less sensitive to color, texture, ambient light
- Medium range (0.05 <u>1 m</u>)
- Cost 5-25 USD

Time of Flight IR Sensor

- Emit a pulse modulated signal, record time *t* until return!
 - $r = t^*c/2$
 - c = speed of light = 299,792,458 m/s
- Mostly insensitive to texture, color, ambient light

Time of Flight IR Sensor

- Emit a pulse modulated signal, record time *t* until return!
 - $r = t^* c/2$
 - c = speed of light = 299,792,458 m/s
- Mostly insensitive to texture, color, ambient light
- Outputs (Distance in mm, return signal rate, ambient signal rate, range status)

Time of Flight IR Sensor

- Emit a pulse modulated signal, record time t until return!
 - $r = t^* c/2$
 - c = speed of light = 299,792,458 m/s
- Mostly insensitive to texture, color, ambient light
- Outputs (Distance in mm, return signal rate, ambient signal rate, range status)
- Programmable FOV
- Timing budget
 - 20ms: short distance mode (0.05 1.3m)
 - 33ms: all distance modes (0.05 3.6m)
 - 140ms: improve reliability errors
- Newest developments

E4960 Fast Robots

ToF Imager (64 pixels)

Light Detection and Ranging Sensors

- Most common sensors on autonomous cars and robots
- Single points, line scans, full 3D
- \$\$\$

ECE4960 Fast Robots

What does the color represent?

Ultrasound (Time of Flight) Distance Sensors

- Measure the reflections of an emitted sound wave
 - $r = t * c_{sound}/2$
 - c_{sound} = 343 m/s

F4960 Fast Robots

- Frequency versus resolution and range
 - 58kHz: cm resolution, range < 11m
 - 300kHz: mm resolution, range < 0.3m
- Cost is low (Sparkfun module: 4-12 USD)
- Insensitive to color, texture, glass, fog, dust, etc.
- Sensitive to humidity, temperature, audible noise, 0 and geometry

220 200

120

Legend

Soft Carpet Firm Carpet

Hardwood

🗖 Tile

Distance (

Ultrasound (Time of Flight) Distance Sensors

• Measure the reflections of an emitted sound wave

DIY-level Distance Sensors

Technology	Application	Pros	Cons
Amplitude- based IR	<10cm	~ 0.5 USDSmall form factor	Depends on target reflectivityDoes not work in high ambient light
IR triangulation	<1m	 Insensitive to surface color/texture/ambient light 	 ~ 10 USD Does not work in high ambient light Bulky (1.75" × 0.75" × 0.53") Low sample rate (26Hz)
IR Time of Flight	0.1 - 4m	 Small form factor Insensitive to surface color/texture/ambient light 	 ~ 6.5 USD Complicated processing Low sampling frequency: 7-30Hz
Ultrasonic	0.2 – 10m	 Low cost Insensitive to ambient light and surface color Works in rain and fog 	 ~4 USD Complicated processing Resolution trade off with max range Output depends on surface/geometry/humidity Bulky, sample time (tens of milliseconds) Hard to achieve a narrow FoV

Prof. Kirstin Hagelskjær Petersen kirstin@cornell.edu

ECE 4960

ODOMETRY SENSORS

(the process of inferring your position by the integration of speed)

- Wheel encoders
 - IMU
 - Optical flow

Encoders

- Technology
 - Magnetic
 - Optical
 - Inductive, Capacitive, Laser
- Rotary (shaft) Encoders
 - Absolute Rotary Encoders (angular position)
 - Incremental Rotary Encoders (distance, speed, position)

How to add encoders to your robot?

Dead Reckoning

- Map the present state and wheel encoder measurements to the new robot state
 - $X_t = f(X_{t-1}, U_{t-1})$
 - Pro: Easy to implement
 - Con: Errors integrate and grow unbounded
- Sources of error?
 - Limited resolution during integration
 - Unequal wheel diameter
 - Variation in the contact point of the wheel
 - Variable friction > slipping
 - Drift or noise in sensors
- How do wheel rotation errors propagate into positioning errors?

- Start at pose X_{t-1} , move right/left wheel by $\triangle s_r$ and $\triangle s_l$, what is pose X_t ?
- Model the change in angle $\Delta \theta$ and the distance travelled Δs
 - (assume that the robot is travelling on a circular arc of constant radius)

- Start at pose X_{t-1} , move right/left wheel by $\triangle s_r$ and $\triangle s_l$, what is pose X_t ?
- Model the change in angle $\Delta \theta$ and the distance travelled Δs
 - (assume that the robot is travelling on a circular arc of constant radius)

For circular arcs:

- (1) $\Delta s_l = R\alpha$
- (2) $\Delta s_r = (R + 2L)\alpha$
- (3) $\Delta s = (R + L)\alpha$
- Use (1) and (2) to compute (4):

•
$$L\alpha = \frac{(\Delta s_r - R\alpha)}{2}$$

• $= \frac{\Delta s_r}{2} - \frac{\Delta s_l}{2}$

• Insert into (3): $\Delta s = \Delta s_l + \frac{\Delta s_r}{2} - \frac{\Delta s_l}{2} = \frac{\Delta s_l + \Delta s_r}{2}$

- Start at pose X_{t-1} , move right/left wheel by $\triangle s_r$ and $\triangle s_l$, what is pose X_t ?
- Model the change in angle $\Delta \theta$ and the distance travelled Δs
 - (assume that the robot is travelling on a circular arc of constant radius)

For circular arcs:

- (1) $\Delta s_l = R\alpha$
- (2) $\Delta s_r = (R + 2L)\alpha$
- (3) $\Delta s = (R + L)\alpha$

• (4)
$$\Delta s = \frac{\Delta s_l + \Delta s_r}{2}$$

 (or note that the distance traveled by the robot center, is simply the avg distance traveled by each wheel)

- Start at pose X_{t-1} , move right/left wheel by $\triangle s_r$ and $\triangle s_l$, what is pose X_t ?
- Model the change in angle $\Delta \theta$ and the distance travelled Δs
 - (assume that the robot is travelling on a circular arc of constant radius)

For circular arcs:

- (1) $\Delta s_l = R\alpha$
- (2) $\Delta s_r = (R + 2L)\alpha$
- (3) $\Delta s = (R + L)\alpha$

• (4)
$$\Delta s = \frac{\Delta s_l + \Delta s_r}{2}$$

- The change in angle, $\Delta \theta$:
 - $\Delta \theta = \alpha$

- Start at pose X_{t-1} , move right/left wheel by $\triangle s_r$ and $\triangle s_l$, what is pose X_t ?
- Model the change in angle $\Delta \theta$ and the distance travelled Δs
 - (assume that the robot is travelling on a circular arc of constant radius)

For circular arcs:

- (1) $\Delta s_l = R\alpha$
- (2) $\Delta s_r = (R + 2L)\alpha$
- (3) $\Delta s = (R+L)\alpha$

• (4)
$$\Delta s = \frac{\Delta s_l + \Delta s_r}{2}$$

• Use α in (1) and (2): • $\frac{\Delta s_l}{R} = \frac{\Delta s_r}{R+2L} \iff (R+2L)\Delta s_l = R(\Delta s_r)$ • $\leftrightarrow 2L\Delta s_l = R(\Delta s_r - \Delta s_l)$ • $\leftrightarrow R = \frac{2L\Delta s_l}{\Delta s_r - \Delta s_l}$

- Start at pose X_{t-1} , move right/left wheel by $\triangle s_r$ and $\triangle s_l$, what is pose X_t ?
- Model the change in angle $\Delta \theta$ and the distance travelled Δs
 - (assume that the robot is travelling on a circular arc of constant radius)

For circular arcs:

• (1) $\Delta s_l = R \alpha$

• (2)
$$\Delta s_r = (R + 2L)\alpha$$

• (3)
$$\Delta s = (R+L)\alpha$$

• (4)
$$\Delta s = \frac{\Delta s_l + \Delta s_r}{2}$$

• (5) $R = \frac{2L\Delta s_l}{\Delta s_r - \Delta s_l}$

Use (5) in (1) :
•
$$\alpha = \frac{\Delta s_l}{R} = \frac{\Delta s_l (\Delta s_r - \Delta s_l)}{2L\Delta s_l} = \frac{\Delta s_r - \Delta s_l}{2L} = \Delta \theta$$

- Start at pose X_{t-1} , move right/left wheel by $\triangle s_r$ and $\triangle s_l$, what is pose X_t ?
- Model the change in angle $\Delta \theta$ and the distance travelled Δs
 - (assume that the robot is travelling on a circular arc of constant radius)
 - (assume that the motion is small, $\Delta d \approx \Delta s$)

For circular arcs:

(1)
$$\Delta s_l = R\alpha$$

• (2)
$$\Delta s_r = (R + 2L)\alpha$$

• (3)
$$\Delta s = (R+L)\alpha$$

• (4)
$$\Delta s = \frac{\Delta s_l + \Delta s_r}{2}$$

• (5) $R = \frac{2L\Delta s_l}{\Delta s_r - \Delta s_l}$
• (6) $\Delta \theta = \frac{\Delta s_r - \Delta s_l}{2L}$

- Start at pose X_{t-1} , move right/left wheel by $\triangle s_r$ and $\triangle s_l$, what is pose X_t ? igodol
- Model the change in angle $\Delta \theta$ and the distance travelled Δs ightarrow
 - (assume that the robot is travelling on a circular arc of constant radius) igodot
 - (assume that the motion is small, $\Delta d \approx \Delta s$) igodol

For circular arcs:

(1)
$$\Delta s_l = R\alpha$$

• (2)
$$\Delta s_r = (R + 2L)\alpha$$

• (3)
$$\Delta s = (R+L)\alpha$$

• (3)
$$\Delta s = (R + L)\alpha$$

• (5) $R =$
• (7) $\Delta x = \Delta s \cos(\theta + \Delta \theta/2)$
• (6) $\Delta \theta =$

• (8)
$$\Delta y = \Delta s \sin(\theta + \Delta \theta/2)^{\bullet}$$
 (6) $\Delta \theta =$

 $\Delta s_l + \Delta s_r$

 $\Delta S_{m} - \Delta S_{m}$

 $\Delta S_r - \Delta S_I$

2L

(4) ∆*s*

- Start at pose X_{t-1} , move right/left wheel by $\triangle s_r$ and $\triangle s_l$, what is pose X_t ?
- Model the change in angle $\Delta \theta$ and the distance travelled Δs
 - (assume that the robot is travelling on a circular arc of constant radius)
 - (assume that the motion is small, $\Delta d \approx \Delta s$)

• (4)
$$\Delta s = \frac{\Delta s_l + \Delta s_r}{2}$$

• (6) $\Delta \theta = \frac{\Delta s_r - \Delta s_l}{2L}$
• (7) $\Delta x = \Delta s \cos(\theta + \Delta \theta/2)$
• (8) $\Delta y = \Delta s \sin(\theta + \Delta \theta/2)$
• $X_t = f(x, y, \theta, \Delta s_r, \Delta s_l)$

•
$$X_t = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} + \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta \theta \end{bmatrix}$$

$$= \begin{bmatrix} x \\ y \\ \theta \end{bmatrix} + \begin{bmatrix} \frac{\Delta s_l + \Delta s_r}{2} \cos\left(\theta + \frac{\Delta s_r - \Delta s_l}{4L}\right) \\ \frac{\Delta s_l + \Delta s_r}{2} \sin\left(\theta + \frac{\Delta s_r - \Delta s_l}{4L}\right) \\ \frac{\Delta s_r - \Delta s_l}{2L} \end{bmatrix}$$

• How do wheel rotation errors propagate into positioning errors?

How do wheel rotation errors propaga into nositioning errors? •

[ш]

-0.1

0

0.1

0.2

[m]

0.3

0.4

$$\Delta s = d + e_{s}$$
• $\Delta x = \frac{\Delta s_{l} + \Delta s_{r} + e_{s}}{2} \cos \left(\theta + \frac{\Delta s_{r} - \Delta s_{l}}{4L}\right)$
• $\Delta y = \frac{\Delta s_{l} + \Delta s_{r} + e_{s}}{2} \sin \left(\theta + \frac{\Delta s_{r} - \Delta s_{l}}{4L}\right)$
• $e_{s} \left(\mu_{es} = 1 \text{mm}, \sigma_{es} = 2 \text{mm}\right)$
• $e_{s} \left(\mu_{es} = 0.01, \Delta s_{l} = 0.01\right)$
• $\int_{0.05}^{0.25} \left(\Delta s_{r} = 0.01, \Delta s_{l} = 0.01\right)$
• $\int_{0.05}^{0.25} \left(\Delta s_{r} = 0.02, \Delta s_{l} = 0.01\right)$
• $\int_{0.05}^{0.25} \left(\Delta s_{r} = 0.02, \Delta s_{l} = 0.01\right)$

0.05

0

0.05

0.1

0.2

0.15

[m]

0.25

0.3

• How do wheel rotation errors propagate into positioning errors?

ECE4960 Fast Robots

$$\begin{aligned} \Delta \theta &= \beta + e_{\theta}, e_{\theta} = 1^{\circ} \\ \bullet & \Delta x = \Delta s \cos \left(\theta + \frac{\beta}{2} + e_{\theta} \right) \\ \bullet & \Delta y = \Delta s \sin \left(\theta + \frac{\beta + e_{\theta}}{2} + e_{\theta} \right) \\ \bullet & e_{\theta} \left(\mu_{e\theta} = 0^{\circ}, \sigma_{e\theta} = 1^{\circ} \right) \end{aligned}$$

Prof. Kirstin Hagelskjær Petersen kirstin@cornell.edu

WHY SENSOR FUSION?

- Combine two or more data sources in a way that generates a "better" understanding of the system
 - More consistent signal over time
 - More accurate signal over time
 - More dependable

- Combine two or more data sources in a way that generates a "better" understanding of the system
 - More consistent signal over time
 - More accurate signal over time
 - More dependable

ECE4960 Fast Robots

Responsibility:

- Self-awareness (where am I? what am I doing? what is my state?)
- Situational awareness (detection/tracking)

• Example of situational awareness:

Valeo's LIDAR

- 1. Increase the quality of the data
 - Less noise, uncertainty, deviations

- Adding sensors lowers noise: $n = 1/(\sqrt{N})$
 - 4 identical sensors = $\frac{1}{2}$ noise
 - (Only if the noise is not correlated!)

- 1. Increase the quality of the data
 - Less noise, uncertainty, deviations

E4960 Fast Robots

- You can add a 2nd magnetometer to decrease noise
- But some of the noise is correlated
 - Magnetic fields
- Sol 1: Move the sensor away from the magnetic field
- Sol 2: Low pass filter (introduces lag)
- Sol 3: Fuse the magnetometer data with gyroscope data

- 1. Increase the quality of the data
 - Less noise, uncertainty, deviations
- 2. Increase data reliability

- 1. Increase the quality of the data
 - Less noise, uncertainty, deviations
- 2. Increase data reliability

- 1. Increase the quality of the data
 - Less noise, uncertainty, deviations
- 2. Increase data reliability
- 3. You can measure unmeasured states

- 1. Increase the quality of the data
 - Less noise, uncertainty, deviations
- 2. Increase data reliability
- 3. You can measure unmeasured states
- 4. Increase the coverage area

Sources and References

- <u>http://www.cs.cmu.edu/~rasc/Download/AMRobots4.pdf</u>
- <u>https://www.ti.com/lit/ug/sbau305b/sbau305b.pdf?ts=1599417595209&ref_url=https%253A%252F%252Fwww.google.com%252F</u>
- <u>https://hmc.edu/lair/ARW/ARW-Lecture01-Odometry.pdf</u>
- Matlab Tech Talks on Sensor Fusion (<u>https://www.youtube.com/watch?v=6qV3YjFppuc</u>)

Introduction to Lab 2

• Last 15min of class

