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1. Outcome from Survey
• Concerns with course overlap
• Concerns with EE/signal processing
• Concerns with ME
• Concerns with dynamics/controls
• Many feel comfortable with embedded programming
• Excited to build a fast robot
• Excited to build a robot that works!
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1. Outcome from Survey
2. EdDiscussion question regarding analog outputs
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1. Outcome from Survey
2. EdDiscussion question regarding analog outputs
3. Intro to Sensors

• Distance Sensors
• Odometry and errors

4. Sensor fusion
5. Discuss Lab 2 (Vivek)
6. IMU
7. Lab 3 preparation (groups)
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History
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Shakey: Experiments in Robot Planning and Learning (1972), SRI



Sensor Classification
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• Proprioceptive
• Motor speed, wheel load, joint angles, battery voltage

• Exteroceptive
• distance measurements, light intensity, sound amplitude

• Passive Sensors
• Measure ambient environmental energy 
• E.g. temperature probes, microphones, light sensors

• Active Sensors
• Senses reaction to emitted energy
• E.g. wheel quadrature encoders, ultrasonic sensors, laser 

rangefinders
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Type Sensor Prop/Exte Passive/Active

Tactile 
(contact/closeness)

Contact switches, bumpers, 
Break beams, proximity
Capacitive

Exteroceptive
Exteroceptive
Exteroceptive

Passive
Active
Both

Wheel/motor Brush encoders
Potentiometers
Optical encoders
Magnetic/inductive/capacitive encoders

Proprioceptive
Proprioceptive
Proprioceptive
Proprioceptive

Passive
Passive
Active
Active

Active ranging Reflectivitiy sensors, ultrasonic, laser 
rangefinders, optical triangulation, etc.

Exteroceptive Active

Heading Compass
Gyroscopes

Exteroceptive
Proprioceptive

Passive
Passive

Ground based beacons GPS, RF, reflective beacons Exteroceptive Active

Motion/speed Doppler radar, sound Exteroceptive Active

Vision CCD/CMOS Exteroceptive Passive
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Sensor Characteristics

Name some examples

• Dynamic Range [dB]
• Range
• Resolution
• Linearity
• Bandwidth / Sampling Frequency
• Sensitivity
• Cross-sensitivity
• Accuracy
• Precision
• Error

• Systematic
• Random

• Power consumption
• Size, price, etc…

μ
σ

Ɛ

resolution
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Technology Application Pros Cons

Amplitude-
based IR

<10cm • ~ 0.5 USD
• Small form factor

• Depends on target reflectivity
• Does not work in high ambient light

IR 
triangulation

<1m • Insensitive to surface 
color/texture/ambient light

• ~ 10 USD
• Does not work in high ambient light
• Bulky (1.75″ × 0.75″ × 0.53″)
• Low sample rate (26Hz)

IR Time of 
Flight

0.1 - 4m • High sample rate (4kHz)
• Small form factor
• Insensitive to surface 

color/texture/ambient light

• ~ 6.5 USD
• Complicated processing
• Low sampling frequency: 7-30Hz

Ultrasonic 0.2 – 10m • Low cost
• Insensitive to ambient light and 

surface color
• Works in rain and fog

• ~4 USD
• Complicated processing
• Resolution trade off with max range
• Output depends on surface/geometry/humidity
• Bulky, sample time (tens of milliseconds)
• Hard to achieve a narrow FoV

DIY-level Distance Sensors
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The Electromagnetic Spectrum



Amplitude –Based IR Distance Sensors
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Source credits: 
spacekids.com

• Very cheap
• Very simple circuitry
• Works reasonably well for

• Object detection
• Break beam sensors
• Classifying greyscale 

intensity at a fixed distance
• Short-range distance sensor

• Sensitive to surface color, 
texture, and ambient light

VCNL4040
• $3.34
• Range 20cm
• Ambient light sensor
• Programmable DC
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Source credits: 
spacekids.com

• Very cheap
• Very simple circuitry
• Works reasonably well for

• Object detection
• Break beam sensors
• Classifying greyscale 

intensity at a fixed distance
• Short-range distance sensor

• Sensitive to surface color, 
texture, and ambient light

VCNL4040
• $3.34
• Range 20cm
• Ambient light sensor
• Programmable DC
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Amplitude –Based IR Distance Sensors
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Triangulation–Based IR Distance Sensors
• Very simple circuitry
• Less sensitive to color, texture, ambient light
• Medium range (0.05 - 1 m)
• Cost 5-25 USD



Time of Flight IR Sensor
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Target 
surface

• Emit a pulse modulated signal, record time t until return!
• r = t*c/2
• c = speed of light = 299,792,458 m/s

• Mostly insensitive to texture, color, ambient light



Time of Flight IR Sensor
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Target 
surface

• Emit a pulse modulated signal, record time t until return!
• r = t*c/2
• c = speed of light = 299,792,458 m/s

• Mostly insensitive to texture, color, ambient light
• Outputs (Distance in mm, return signal rate, ambient signal rate, range status)



Time of Flight IR Sensor
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• Timing budget
• 20ms: short distance mode (0.05 - 1.3m)
• 33ms: all distance modes (0.05 - 3.6m)
• 140ms: improve reliability errors

• Newest developments
• ToF Imager (64 pixels)

• Emit a pulse modulated signal, record time t until return!
• r = t*c/2
• c = speed of light = 299,792,458 m/s

• Mostly insensitive to texture, color, ambient light
• Outputs (Distance in mm, return signal rate, ambient signal rate, range status)
• Programmable FOV



Light Detection and Ranging Sensors
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• Most common sensors on autonomous cars and robots
• Single points, line scans, full 3D
• $$$

What does the color 
represent?



Ultrasound (Time of Flight) Distance Sensors
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• Measure the reflections of an emitted sound wave
• r = t * csound/2
• csound = 343 m/s

• Frequency versus resolution and range
• 58kHz: cm resolution, range < 11m
• 300kHz: mm resolution, range < 0.3m

• Cost is low (Sparkfun module: 4-12 USD)
• Insensitive to color, texture, glass, fog, dust, etc.
• Sensitive to humidity, temperature, audible noise, 

and geometry



Ultrasound (Time of Flight) Distance Sensors
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• Measure the reflections of an emitted sound wave
• r = t * csound
• csound = 343 m/s



DIY-level Distance Sensors
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Technology Application Pros Cons

Amplitude-
based IR

<10cm • ~ 0.5 USD
• Small form factor

• Depends on target reflectivity
• Does not work in high ambient light

IR 
triangulation

<1m • Insensitive to surface 
color/texture/ambient light

• ~ 10 USD
• Does not work in high ambient light
• Bulky (1.75″ × 0.75″ × 0.53″)
• Low sample rate (26Hz)

IR Time of 
Flight

0.1 - 4m • Small form factor
• Insensitive to surface 

color/texture/ambient light

• ~ 6.5 USD
• Complicated processing
• Low sampling frequency: 7-30Hz

Ultrasonic 0.2 – 10m • Low cost
• Insensitive to ambient light and 

surface color
• Works in rain and fog

• ~4 USD
• Complicated processing
• Resolution trade off with max range
• Output depends on surface/geometry/humidity
• Bulky, sample time (tens of milliseconds)
• Hard to achieve a narrow FoV
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(the process of inferring your position by the integration of speed)
• Wheel encoders

• IMU
• Optical flow



Encoders
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• Technology
• Magnetic
• Optical
• Inductive, Capacitive, Laser

• Rotary (shaft) Encoders
• Absolute Rotary Encoders (angular position)
• Incremental Rotary Encoders (distance, speed, 

position)

How to add encoders to your robot?



Dead Reckoning
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• Map the present state and wheel encoder measurements to the new robot state
• 𝑋𝑋𝑡𝑡 = 𝑓𝑓 𝑋𝑋𝑡𝑡−1,𝑈𝑈𝑡𝑡−1
• Pro: Easy to implement
• Con: Errors integrate and grow unbounded

• Sources of error?
• Limited resolution during integration
• Unequal wheel diameter
• Variation in the contact point of the wheel
• Variable friction > slipping
• Drift or noise in sensors

• How do wheel rotation errors propagate into positioning errors?



Modeling Motion
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• Start at pose 𝑋𝑋𝑡𝑡−1, move right/left wheel by △ 𝑠𝑠𝑟𝑟 and △ 𝑠𝑠𝑙𝑙, what is pose 𝑋𝑋𝑡𝑡?
• Model the change in angle ∆𝜃𝜃 and the distance travelled ∆𝑠𝑠

• (assume that the robot is travelling on a circular arc of constant radius)

∆𝜃𝜃
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• Start at pose 𝑋𝑋𝑡𝑡−1, move right/left wheel by △ 𝑠𝑠𝑟𝑟 and △ 𝑠𝑠𝑙𝑙, what is pose 𝑋𝑋𝑡𝑡?
• Model the change in angle ∆𝜃𝜃 and the distance travelled ∆𝑠𝑠

• (assume that the robot is travelling on a circular arc of constant radius)

For circular arcs:
• 1 ∆𝑠𝑠𝑙𝑙 = 𝑅𝑅𝑅𝑅
• 2 ∆𝑠𝑠𝑟𝑟 = 𝑅𝑅 + 2𝐿𝐿 𝑅𝑅
• 3 ∆𝑠𝑠 = (𝑅𝑅 + 𝐿𝐿)𝑅𝑅

• Use (1) and (2) to compute (4):
• 𝐿𝐿𝑅𝑅 = ∆𝑠𝑠𝑟𝑟−𝑅𝑅𝑅𝑅

2

• = ∆𝑠𝑠𝑟𝑟
2

- ∆𝑠𝑠𝑙𝑙
2

• Insert into (3): ∆𝑠𝑠 = ∆𝑠𝑠𝑙𝑙 + ∆𝑠𝑠𝑟𝑟
2
− ∆𝑠𝑠𝑙𝑙

2
= ∆𝑠𝑠𝑙𝑙+∆𝑠𝑠𝑟𝑟

2
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• Start at pose 𝑋𝑋𝑡𝑡−1, move right/left wheel by △ 𝑠𝑠𝑟𝑟 and △ 𝑠𝑠𝑙𝑙, what is pose 𝑋𝑋𝑡𝑡?
• Model the change in angle ∆𝜃𝜃 and the distance travelled ∆𝑠𝑠

• (assume that the robot is travelling on a circular arc of constant radius)

For circular arcs:
• 1 ∆𝑠𝑠𝑙𝑙 = 𝑅𝑅𝑅𝑅
• 2 ∆𝑠𝑠𝑟𝑟 = 𝑅𝑅 + 2𝐿𝐿 𝑅𝑅
• 3 ∆𝑠𝑠 = (𝑅𝑅 + 𝐿𝐿)𝑅𝑅

• (or note that the distance traveled by the robot center, 
is simply the avg distance traveled by each wheel) 

• (4) ∆𝑠𝑠 = ∆𝑠𝑠𝑙𝑙+∆𝑠𝑠𝑟𝑟
2
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• Start at pose 𝑋𝑋𝑡𝑡−1, move right/left wheel by △ 𝑠𝑠𝑟𝑟 and △ 𝑠𝑠𝑙𝑙, what is pose 𝑋𝑋𝑡𝑡?
• Model the change in angle ∆𝜃𝜃 and the distance travelled ∆𝑠𝑠

• (assume that the robot is travelling on a circular arc of constant radius)

For circular arcs:
• 1 ∆𝑠𝑠𝑙𝑙 = 𝑅𝑅𝑅𝑅
• 2 ∆𝑠𝑠𝑟𝑟 = 𝑅𝑅 + 2𝐿𝐿 𝑅𝑅
• 3 ∆𝑠𝑠 = (𝑅𝑅 + 𝐿𝐿)𝑅𝑅

• The change in angle, ∆𝜃𝜃:
• ∆𝜃𝜃 = 𝑅𝑅

• (4) ∆𝑠𝑠 = ∆𝑠𝑠𝑙𝑙+∆𝑠𝑠𝑟𝑟
2

∆𝜃𝜃
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• Start at pose 𝑋𝑋𝑡𝑡−1, move right/left wheel by △ 𝑠𝑠𝑟𝑟 and △ 𝑠𝑠𝑙𝑙, what is pose 𝑋𝑋𝑡𝑡?
• Model the change in angle ∆𝜃𝜃 and the distance travelled ∆𝑠𝑠

• (assume that the robot is travelling on a circular arc of constant radius)

For circular arcs:
• 1 ∆𝑠𝑠𝑙𝑙 = 𝑅𝑅𝑅𝑅
• 2 ∆𝑠𝑠𝑟𝑟 = 𝑅𝑅 + 2𝐿𝐿 𝑅𝑅
• 3 ∆𝑠𝑠 = (𝑅𝑅 + 𝐿𝐿)𝑅𝑅

• Use 𝑅𝑅 in (1) and (2):
• ∆𝑠𝑠𝑙𝑙

𝑅𝑅
= ∆𝑠𝑠𝑟𝑟

𝑅𝑅+2𝐿𝐿
↔ 𝑅𝑅 + 2𝐿𝐿 ∆𝑠𝑠𝑙𝑙 = 𝑅𝑅 ∆𝑠𝑠𝑟𝑟

• ↔ 2𝐿𝐿∆𝑠𝑠𝑙𝑙 = R ∆𝑠𝑠𝑟𝑟 − ∆𝑠𝑠𝑙𝑙
• ↔ 𝑅𝑅 = 2𝐿𝐿∆𝑠𝑠𝑙𝑙

∆𝑠𝑠𝑟𝑟−∆𝑠𝑠𝑙𝑙

• (4) ∆𝑠𝑠 = ∆𝑠𝑠𝑙𝑙+∆𝑠𝑠𝑟𝑟
2

∆𝜃𝜃
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• Start at pose 𝑋𝑋𝑡𝑡−1, move right/left wheel by △ 𝑠𝑠𝑟𝑟 and △ 𝑠𝑠𝑙𝑙, what is pose 𝑋𝑋𝑡𝑡?
• Model the change in angle ∆𝜃𝜃 and the distance travelled ∆𝑠𝑠

• (assume that the robot is travelling on a circular arc of constant radius)

For circular arcs:
• 1 ∆𝑠𝑠𝑙𝑙 = 𝑅𝑅𝑅𝑅
• 2 ∆𝑠𝑠𝑟𝑟 = 𝑅𝑅 + 2𝐿𝐿 𝑅𝑅
• 3 ∆𝑠𝑠 = (𝑅𝑅 + 𝐿𝐿)𝑅𝑅

• Use (5) in (1) :
• α = ∆𝑠𝑠𝑙𝑙

𝑅𝑅
= ∆𝑠𝑠𝑙𝑙 ∆𝑠𝑠𝑟𝑟−∆𝑠𝑠𝑙𝑙

2𝐿𝐿∆𝑠𝑠𝑙𝑙
= ∆𝑠𝑠𝑟𝑟−∆𝑠𝑠𝑙𝑙

2𝐿𝐿
= ∆𝜃𝜃

• (4) ∆𝑠𝑠 = ∆𝑠𝑠𝑙𝑙+∆𝑠𝑠𝑟𝑟
2

• (5) 𝑅𝑅 = 2𝐿𝐿∆𝑠𝑠𝑙𝑙
∆𝑠𝑠𝑟𝑟−∆𝑠𝑠𝑙𝑙

∆𝜃𝜃
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• Start at pose 𝑋𝑋𝑡𝑡−1, move right/left wheel by △ 𝑠𝑠𝑟𝑟 and △ 𝑠𝑠𝑙𝑙, what is pose 𝑋𝑋𝑡𝑡?
• Model the change in angle ∆𝜃𝜃 and the distance travelled ∆𝑠𝑠

• (assume that the robot is travelling on a circular arc of constant radius)
• (assume that the motion is small, ∆𝑑𝑑 ≈ ∆𝑠𝑠)

For circular arcs:
• 1 ∆𝑠𝑠𝑙𝑙 = 𝑅𝑅𝑅𝑅
• 2 ∆𝑠𝑠𝑟𝑟 = 𝑅𝑅 + 2𝐿𝐿 𝑅𝑅
• 3 ∆𝑠𝑠 = (𝑅𝑅 + 𝐿𝐿)𝑅𝑅 • (4) ∆𝑠𝑠 = ∆𝑠𝑠𝑙𝑙+∆𝑠𝑠𝑟𝑟

2

• (5) 𝑅𝑅 = 2𝐿𝐿∆𝑠𝑠𝑙𝑙
∆𝑠𝑠𝑟𝑟−∆𝑠𝑠𝑙𝑙

• (6) ∆𝜃𝜃 = ∆𝑠𝑠𝑟𝑟−∆𝑠𝑠𝑙𝑙
2𝐿𝐿
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• Start at pose 𝑋𝑋𝑡𝑡−1, move right/left wheel by △ 𝑠𝑠𝑟𝑟 and △ 𝑠𝑠𝑙𝑙, what is pose 𝑋𝑋𝑡𝑡?
• Model the change in angle ∆𝜃𝜃 and the distance travelled ∆𝑠𝑠

• (assume that the robot is travelling on a circular arc of constant radius)
• (assume that the motion is small, ∆𝑑𝑑 ≈ ∆𝑠𝑠)

For circular arcs:
• 1 ∆𝑠𝑠𝑙𝑙 = 𝑅𝑅𝑅𝑅
• 2 ∆𝑠𝑠𝑟𝑟 = 𝑅𝑅 + 2𝐿𝐿 𝑅𝑅
• 3 ∆𝑠𝑠 = (𝑅𝑅 + 𝐿𝐿)𝑅𝑅

• (7) ∆𝑥𝑥 = ∆𝑠𝑠 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 + ∆𝜃𝜃/2
• (8) ∆𝑦𝑦 = ∆𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 + ∆𝜃𝜃/2

• (4) ∆𝑠𝑠 = ∆𝑠𝑠𝑙𝑙+∆𝑠𝑠𝑟𝑟
2

• (5) 𝑅𝑅 = 2𝐿𝐿∆𝑠𝑠𝑙𝑙
∆𝑠𝑠𝑟𝑟−∆𝑠𝑠𝑙𝑙

• (6) ∆𝜃𝜃 = ∆𝑠𝑠𝑟𝑟−∆𝑠𝑠𝑙𝑙
2𝐿𝐿
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• Start at pose 𝑋𝑋𝑡𝑡−1, move right/left wheel by △ 𝑠𝑠𝑟𝑟 and △ 𝑠𝑠𝑙𝑙, what is pose 𝑋𝑋𝑡𝑡?
• Model the change in angle ∆𝜃𝜃 and the distance travelled ∆𝑠𝑠

• (assume that the robot is travelling on a circular arc of constant radius)
• (assume that the motion is small, ∆𝑑𝑑 ≈ ∆𝑠𝑠)

• (4) ∆𝑠𝑠 = ∆𝑠𝑠𝑙𝑙+∆𝑠𝑠𝑟𝑟
2

• (6) ∆𝜃𝜃 = ∆𝑠𝑠𝑟𝑟−∆𝑠𝑠𝑙𝑙
2𝐿𝐿

• (7) ∆𝑥𝑥 = ∆𝑠𝑠 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 + ∆𝜃𝜃/2
• (8) ∆𝑦𝑦 = ∆𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 + ∆𝜃𝜃/2
• 𝑋𝑋𝑡𝑡 = 𝑓𝑓 𝑥𝑥,𝑦𝑦,𝜃𝜃,∆𝑠𝑠𝑟𝑟 ,∆𝑠𝑠𝑙𝑙

• 𝑋𝑋𝑡𝑡 =
𝑥𝑥
𝑦𝑦
𝜃𝜃

+
∆𝑥𝑥
∆𝑦𝑦
∆𝜃𝜃 =

𝑥𝑥
𝑦𝑦
𝜃𝜃

+

∆𝑠𝑠𝑙𝑙+∆𝑠𝑠𝑟𝑟
2 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 +

∆𝑠𝑠𝑟𝑟 − ∆𝑠𝑠𝑙𝑙
4𝐿𝐿

∆𝑠𝑠𝑙𝑙+∆𝑠𝑠𝑟𝑟
2 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 +

∆𝑠𝑠𝑟𝑟 − ∆𝑠𝑠𝑙𝑙
4𝐿𝐿

∆𝑠𝑠𝑟𝑟 − ∆𝑠𝑠𝑙𝑙
2𝐿𝐿
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• How do wheel rotation errors propagate into positioning errors?
• ∆𝑠𝑠 = 𝑑𝑑 + 𝑒𝑒𝑠𝑠

• ∆𝑥𝑥 = ∆𝑠𝑠𝑙𝑙+∆𝑠𝑠𝑟𝑟+𝑒𝑒𝑆𝑆
2

𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 + ∆𝑠𝑠𝑟𝑟−∆𝑠𝑠𝑙𝑙
4𝐿𝐿

• ∆𝑦𝑦 = ∆𝑠𝑠𝑙𝑙+∆𝑠𝑠𝑟𝑟+𝑒𝑒𝑆𝑆
2

𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 + ∆𝑠𝑠𝑟𝑟−∆𝑠𝑠𝑙𝑙
4𝐿𝐿

0 0.02 0.04 0.06 0.08 0.1 0.12

[m]

-1

0

1

[m
]

(∆𝑠𝑠𝑟𝑟=0.01, ∆𝑠𝑠𝑙𝑙=0.01, 𝑒𝑒𝑠𝑠 = 0.001)
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• How do wheel rotation errors propagate into positioning errors?
• ∆𝑠𝑠 = 𝑑𝑑 + 𝑒𝑒𝑠𝑠

• ∆𝑥𝑥 = ∆𝑠𝑠𝑙𝑙+∆𝑠𝑠𝑟𝑟+𝑒𝑒𝑆𝑆
2

𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 + ∆𝑠𝑠𝑟𝑟−∆𝑠𝑠𝑙𝑙
4𝐿𝐿

• ∆𝑦𝑦 = ∆𝑠𝑠𝑙𝑙+∆𝑠𝑠𝑟𝑟+𝑒𝑒𝑆𝑆
2

𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 + ∆𝑠𝑠𝑟𝑟−∆𝑠𝑠𝑙𝑙
4𝐿𝐿

• 𝑒𝑒𝑠𝑠 (𝜇𝜇𝑒𝑒𝑠𝑠= 1mm, 𝜎𝜎𝑒𝑒𝑠𝑠= 2mm)

(∆𝑠𝑠𝑟𝑟=0.02, ∆𝑠𝑠𝑙𝑙=0.01)(∆𝑠𝑠𝑟𝑟=0.01, ∆𝑠𝑠𝑙𝑙=0.01)

P

𝜇𝜇𝑒𝑒𝑠𝑠 𝜎𝜎𝑒𝑒𝑠𝑠−𝜎𝜎𝑒𝑒𝑠𝑠
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• How do wheel rotation errors propagate into positioning errors?

• ∆𝜃𝜃 = 𝛽𝛽 + 𝑒𝑒𝜃𝜃, 𝑒𝑒𝜃𝜃 = 1o

• ∆𝑥𝑥 = ∆𝑠𝑠 𝑐𝑐𝑐𝑐𝑠𝑠 𝜃𝜃 + 𝛽𝛽
2

+ 𝑒𝑒𝜃𝜃
• ∆𝑦𝑦 = ∆𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 + 𝛽𝛽+𝑒𝑒𝜃𝜃

2
+ 𝑒𝑒𝜃𝜃

• 𝑒𝑒𝜃𝜃 (𝜇𝜇𝑒𝑒𝜃𝜃= 0o, 𝜎𝜎𝑒𝑒𝜃𝜃= 1o)

(∆𝑠𝑠𝑟𝑟=0.01, ∆𝑠𝑠𝑙𝑙=0.01)

= 0.1000𝑚𝑚

= 0.0175𝑚𝑚

(∆𝑠𝑠𝑟𝑟=0.02, ∆𝑠𝑠𝑙𝑙=0.01)
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kirstin@cornell.edu
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• Combine two or more data sources in a way that generates a “better” understanding of 
the system
• More consistent signal over time
• More accurate signal over time
• More dependable

Sensor Fusion

sensor 1
sensor 2

data source system state

e.g. acceleration, position, etc

model



Intro to Sensor Fusion
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• Combine two or more data sources in a way that generates a “better” understanding of 
the system
• More consistent signal over time
• More accurate signal over time
• More dependable

Collect data

plan

Physical 
World Interpret data Follow PathFind Path

actsense perceive

sensor fusion
Responsibility:
• Self-awareness (where am I? what am I doing? what is my state?)
• Situational awareness (detection/tracking)



Intro to Sensor Fusion
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• Example of situational awareness:

Valeo’s LIDAR



Intro to Sensor Fusion
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1. Increase the quality of the data
• Less noise, uncertainty, deviations

Sensor Fusion
(avg)

acc 1
acc 2

acceleration with less noise

• Adding sensors lowers noise: n =1/(√N)
• 4 identical sensors = ½ noise

• (Only if the noise is not correlated!)

9.81m/s2

time



mag

Intro to Sensor Fusion
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1. Increase the quality of the data
• Less noise, uncertainty, deviations

time

theta

• You can add a 2nd magnetometer to decrease noise
• But some of the noise is correlated 

• Magnetic fields
• Sol 1: Move the sensor away from the magnetic field
• Sol 2: Low pass filter (introduces lag)
• Sol 3: Fuse the magnetometer data with gyroscope data

Sensor Fusion

mag
gyr

theta (less noisy)

gyr
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1. Increase the quality of the data
• Less noise, uncertainty, deviations

2. Increase data reliability

voting

pitot1
pitot2

pitot3

combine
GPS

wind model

combine
airspeed
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1. Increase the quality of the data
• Less noise, uncertainty, deviations

2. Increase data reliability

distance 
sensor

combine
distance

model
speed, heading



Intro to Sensor Fusion
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1. Increase the quality of the data
• Less noise, uncertainty, deviations

2. Increase data reliability
3. You can measure unmeasured states

Sensor Fusion

cam1
cam2

distance



Intro to Sensor Fusion
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1. Increase the quality of the data
• Less noise, uncertainty, deviations

2. Increase data reliability
3. You can measure unmeasured states
4. Increase the coverage area

Sensor Fusion

Sensor1
Sensor1

coherent map
…
SensorN



Sources and References
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• http://www.cs.cmu.edu/~rasc/Download/AMRobots4.pdf
• https://www.ti.com/lit/ug/sbau305b/sbau305b.pdf?ts=1599417595209&ref_url=https%2

53A%252F%252Fwww.google.com%252F
• https://hmc.edu/lair/ARW/ARW-Lecture01-Odometry.pdf
• Matlab Tech Talks on Sensor Fusion (https://www.youtube.com/watch?v=6qV3YjFppuc)

Introduction to Lab 2
• Last 15min of class

https://www.ti.com/lit/ug/sbau305b/sbau305b.pdf?ts=1599417595209&ref_url=https://www.google.com/
https://www.ti.com/lit/ug/sbau305b/sbau305b.pdf?ts=1599417595209&ref_url=https://www.google.com/
https://hmc.edu/lair/ARW/ARW-Lecture01-Odometry.pdf
https://www.youtube.com/watch?v=6qV3YjFppuc
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