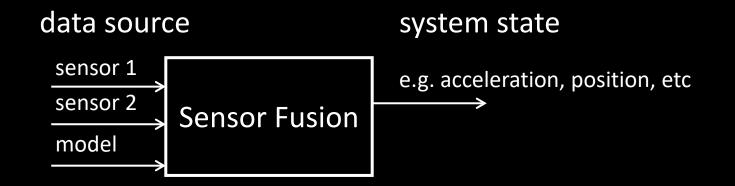
ECE 4960

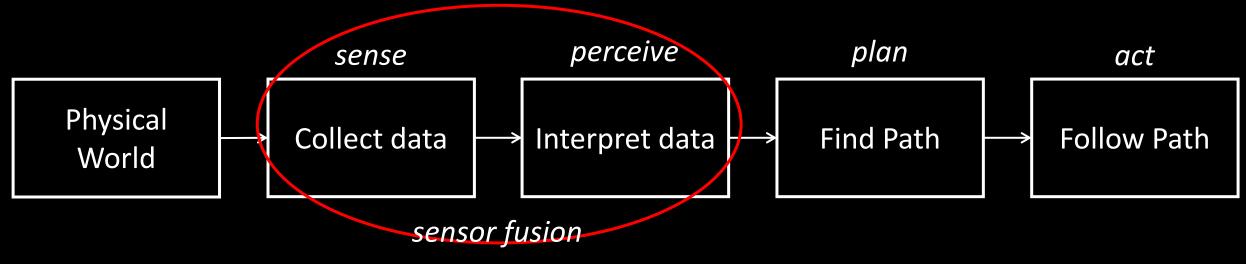
Prof. Kirstin Hagelskjær Petersen kirstin@cornell.edu

Fast Robots

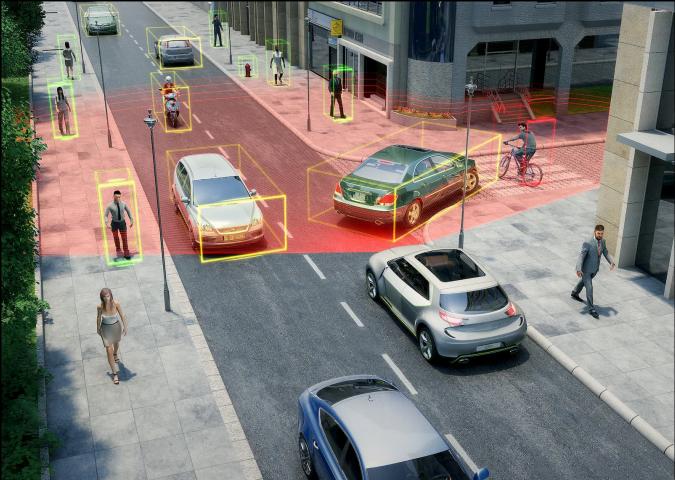

ECE 4960

Prof. Kirstin Hagelskjær Petersen kirstin@cornell.edu

WHY SENSOR FUSION?

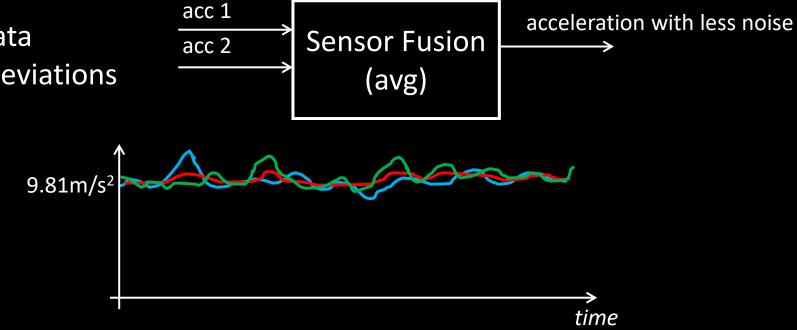

- Combine two or more data sources in a way that generates a "better" understanding of the system
 - More consistent signal over time
 - More accurate signal over time
 - More dependable

- Combine two or more data sources in a way that generates a "better" understanding of the system
 - More consistent signal over time
 - More accurate signal over time
 - More dependable


ECE4960 Fast Robots

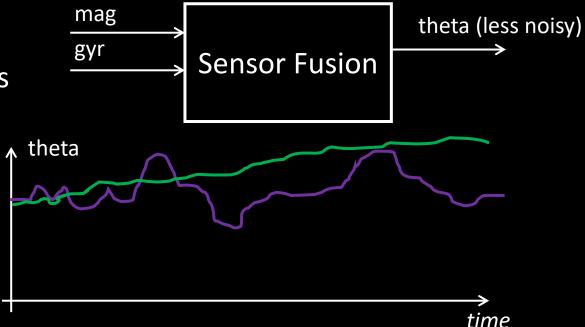
Responsibility:

- Self-awareness (where am I? what am I doing? what is my state?)
- Situational awareness (detection/tracking)

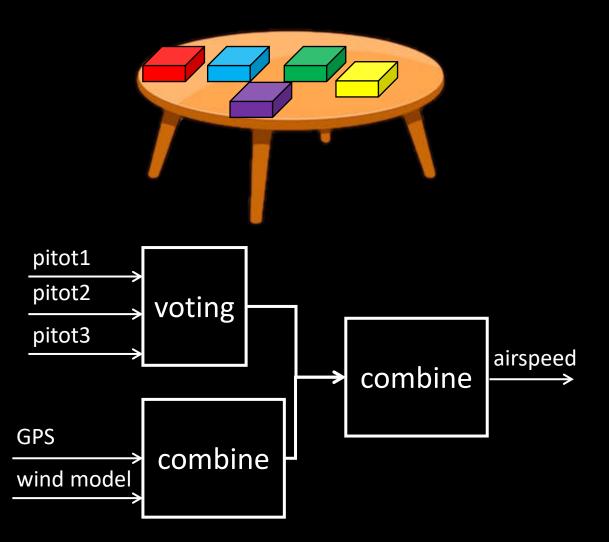

• Example of situational awareness:

Valeo's LIDAR

- 1. Increase the quality of the data
 - Less noise, uncertainty, deviations


- Adding sensors lowers noise: $n = 1/(\sqrt{N})$
 - 4 identical sensors = ¹/₂ noise
 - (Only if the noise is not correlated!)

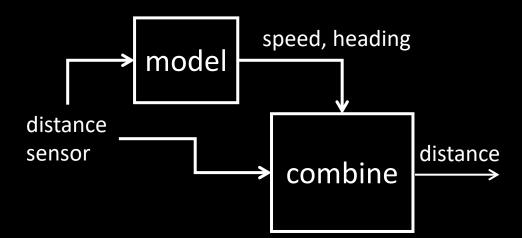
- 1. Increase the quality of the data
 - Less noise, uncertainty, deviations

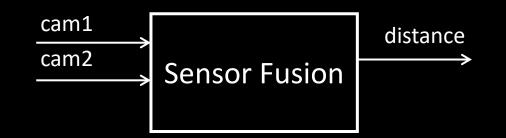

E4960 Fast Robots

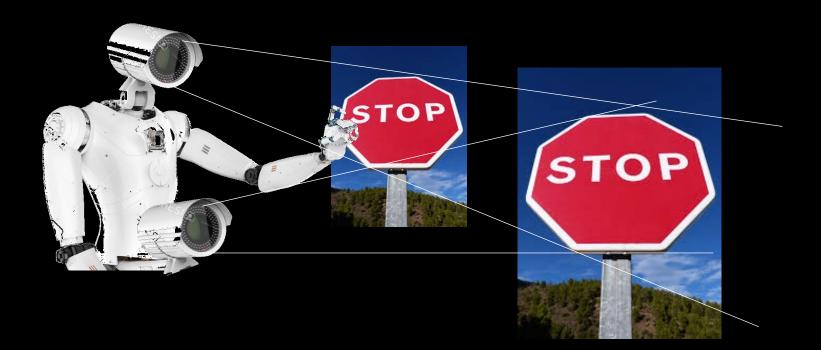


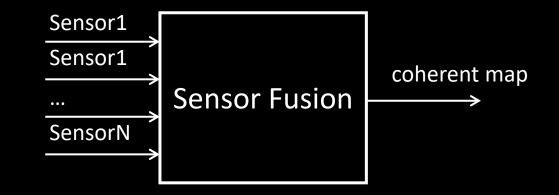
- You can add a 2nd magnetometer to decrease noise
- But some of the noise is correlated
 - Magnetic fields
- Sol 1: Move the sensor away from the magnetic field
- Sol 2: Low pass filter (introduces lag)
- Sol 3: Fuse the mag data with gyr data

- 1. Increase the quality of the data
 - Less noise, uncertainty, deviations
- 2. Increase data reliability




- 1. Increase the quality of the data
 - Less noise, uncertainty, deviations
- 2. Increase data reliability




- 1. Increase the quality of the data
 - Less noise, uncertainty, deviations
- 2. Increase data reliability
- 3. You can measure unmeasured states

- 1. Increase the quality of the data
 - Less noise, uncertainty, deviations
- 2. Increase data reliability
- 3. You can measure unmeasured states
- 4. Increase the coverage area

Sources and References

- <u>http://www.cs.cmu.edu/~rasc/Download/AMRobots4.pdf</u>
- https://www.ti.com/lit/ug/sbau305b/sbau305b.pdf?ts=1599417595209&ref_url=https%2 53A%252F%252Fwww.google.com%252F
- <u>https://hmc.edu/lair/ARW/ARW-Lecture01-Odometry.pdf</u>
- Matlab Tech Talks on Sensor Fusion (<u>https://www.youtube.com/watch?v=6qV3YjFppuc</u>)

IMU

- Inertial Measurement Unit ullet
 - Data related to orientation, velocity, and gravity

IMU

- Inertial Measurement Unit
- Accelerometer
 - Linear acceleration, $a = \dot{v} [m/s^2]$
- Gyroscope
 - Angular velocity, $\omega = \frac{\Delta\theta}{\Delta t}$ [deg/sec]
- Magnetometer
 - Magnetic field strength, [uT] or [Gauss], (1 Gauss = 100uT)
 - \rightarrow Get absolute orientation

 \rightarrow Track orientation

 \rightarrow Track orientation

(position)

• NB: Gravity, magnetic fields, accelerations affect these sensors in many ways!

ICM-20948 Lowest power 9-axis IMU \$16

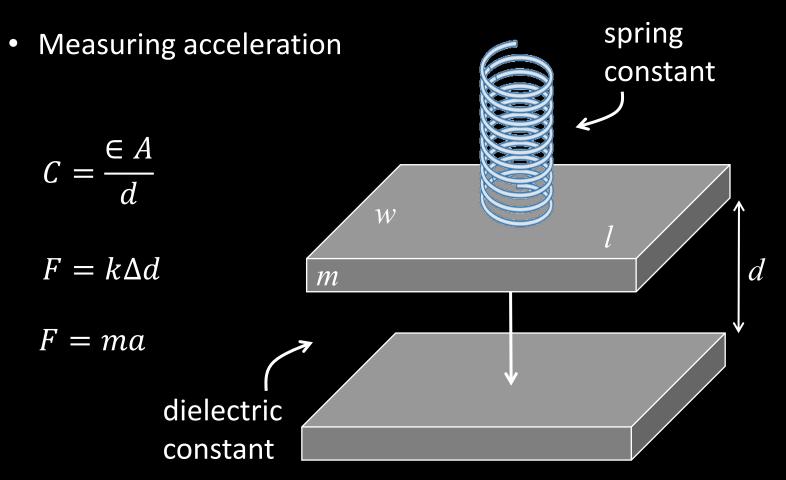
Dead reckoning

IMU - Demo

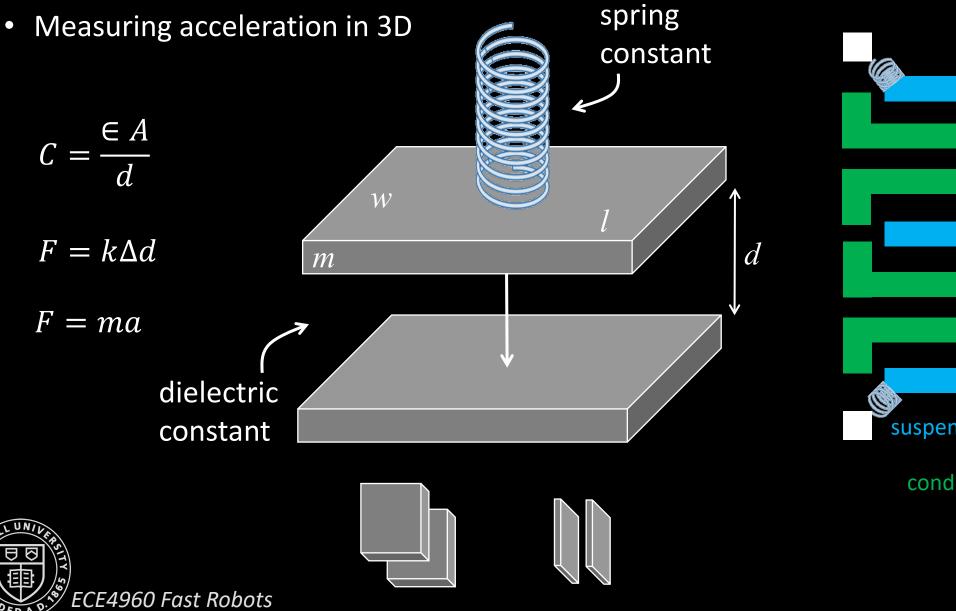
COR

ECE4960 Fast Robots

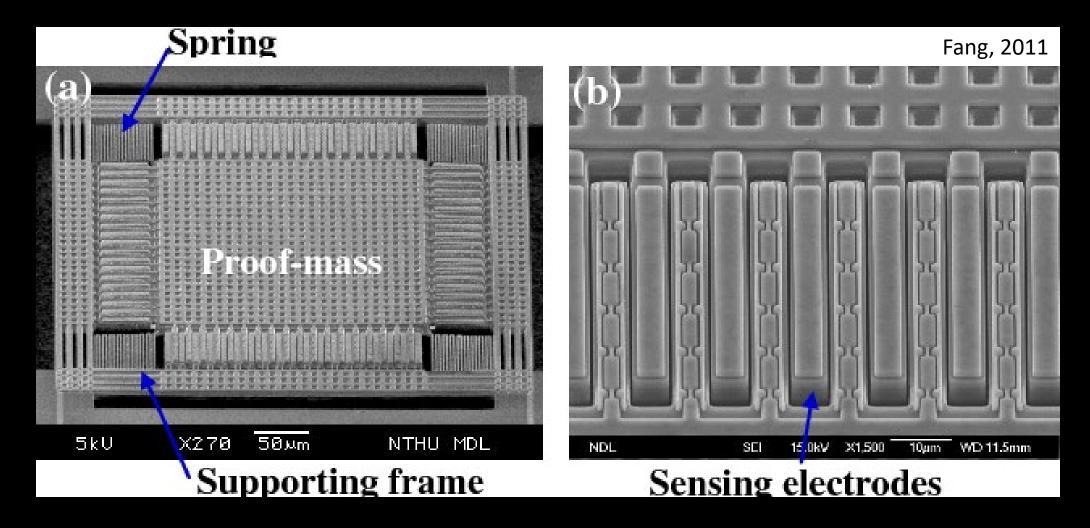
• ..\SparkFun_ICM-20948_ArduinoLibrary-master\examples\Arduino\Example1_Basics

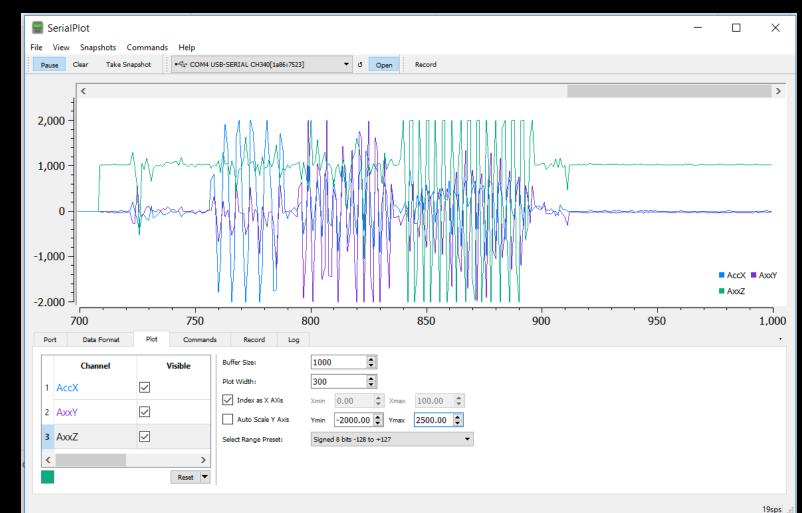

Waiting for data Scaled. Acc (mg) [-00093.75, 00001.46, 01019.53], Gyr (DFS) [-00000.56, 00001.80, -00002.67], Mag (uT) [00001.05, -00049.55, 00049.50], Tmp (C) [00024.35] Scaled. Acc (mg) [-00090.82, 00010.74, 01012.21], Gyr (DFS) [00001.40, 00000.82, 00001.05], Mag (uT) [00002.10, -00050.10, 00049.55], Tmp (C) [00024.16] Scaled. Acc (mg) [-00089.84, 00001.46, 01025.39], Gyr (DFS) [00001.19, 00000.60, 00002.05], Mag (uT) [00001.95, -00049.95, 00049.95], Tmp (C) [00024.16] Scaled. Acc (mg) [-0104.00, 00007.32, 01018.07], Gyr (DFS) [-00001.53, 00001.66, -00002.55], Mag (uT) [00002.70, -00051.45, 00048.75], Tmp (C) [00024.16] Scaled. Acc (mg) [-00087.89, -00003.91, 01010.74], Gyr (DFS) [-00000.18, 00001.04, 00001.18], Mag (uT) [00001.50, -00050.40, 00049.20], Tmp (C) [00024.16] Scaled. Acc (mg) [-00098.19, 00007.32, 01010.74], Gyr (DFS) [00000.19, 00002.67, -00000.11], Mag (uT) [00001.55, -00050.70, 00050.70], Tmp (C) [00024.26] Scaled. Acc (mg) [-00098.19, 00007.32, 01017.09], Gyr (DFS) [00000.19, 00002.37, -00002.16], Mag (uT) [00001.05, -00050.70, 00050.70], Tmp (C) [00024.35] Scaled. Acc (mg) [-00089.36, -00002.44, 01021.97], Gyr (DFS) [00000.73, -00000.73, 00004.83], Mag (uT) [00003.30, -00050.55, 00045.05], Tmp (C) [00024.35] Scaled. Acc (mg) [-00103.52, -00002.44, 01021.97], Gyr (DFS) [00000.73, -00000.73, 00004.83], Mag (uT) [00003.30, -00050.10, 00050.10], Tmp (C) [00024.07] Scaled. Acc (mg) [-01010.55, -00002.44, 01021.97], Gyr (DFS) [00000.73, -00000.73, 00004.83], Mag (uT) [00003.30, -00050.70, 00045.5], Tmp (C) [00024.47] Scaled. Acc (mg) [-01010.55, -00002.44, 01012.19], Gyr (DFS) [00000.73, -00000.73, 00004.83], Mag (uT) [00003.30, -00050.10, 00050.10], Tmp (C) [00024.47] Scaled. Acc (mg) [-01010.55, -00002.44, 01012.47], Gyr (DFS) [00000.73, -00000.73, 00004.83], Mag (uT) [00003.30, -00050.70, 00045.95], Tmp (C) [00024.47] Scaled. Acc (mg) [-01010.55, -00002.44, 01012.47], Gyr (DFS) [-00	Send
Scaled. Acc (mg) [-00089.84, 00001.46, 01025.39], Gyr (DPS) [00001.19, 00000.60, 00002.05], Mag (uT) [00001.95, -00049.95, 00049.95], Tmp (C) [00024.16] Scaled. Acc (mg) [-00104.00, 00007.32, 01018.07], Gyr (DPS) [-00001.53, 00001.66, -00002.59], Mag (uT) [00002.70, -00051.45, 00048.75], Tmp (C) [00024.07] Scaled. Acc (mg) [-00087.89, -00003.91, 0101.74], Gyr (DPS) [-00000.18, 00001.04, 00001.18], Mag (uT) [00001.50, -00050.40, 00049.20], Tmp (C) [00024.16] Scaled. Acc (mg) [-00087.89, -00004.39, 01024.90], Gyr (DPS) [00003.80, -00001.62, -00000.11], Mag (uT) [00001.50, -00050.57, 00050.70], Tmp (C) [00024.26] Scaled. Acc (mg) [-00085.36, -00002.34, 01017.09], Gyr (DPS) [00000.73, -00002.37, -00002.16], Mag (uT) [00003.30, -00050.55, 00050.10, 00050.10], Tmp (C) [00024.40] Scaled. Acc (mg) [-00100.59, -00002.44, 01021.97], Gyr (DPS) [00000.73, -00000.73, 00004.83], Mag (uT) [00003.30, -00050.10, 00050.10], Tmp (C) [00024.40] Scaled. Acc (mg) [-00100.59, -00002.93, 01012.21], Gyr (DPS) [00001.35, 00000.65, 00001.63], Mag (uT) [00002.25, -00050.70, 00049.95], Tmp (C) [00024.07]	
Scaled. Acc (mg) [-00093.75, 00001.46, 01019.53], Gyr (DFS) [-00000.96, 00001.80, -00002.67], Mag (uT) [00001.05, -00049.95, 00049.50], Tmp (C) [00024.35] Scaled. Acc (mg) [-00090.82, 00010.74, 01012.21], Gyr (DFS) [00001.40, 00000.82, 00001.05], Mag (uT) [00002.10, -00050.10, 00049.05], Tmp (C) [00024.16] Scaled. Acc (mg) [-00089.84, 00001.46, 01025.39], Gyr (DFS) [00001.19, 00000.60, 00002.05], Mag (uT) [00001.95, -00049.95, 00049.95], Tmp (C) [00024.16] Scaled. Acc (mg) [-00104.00, 00007.32, 01018.07], Gyr (DFS) [-00001.53, 00001.66, -00002.55], Mag (uT) [00002.70, -00051.45, 00048.75], Tmp (C) [00024.07] Scaled. Acc (mg) [-00087.89, -00003.91, 0101.74], Gyr (DFS) [-00000.18, 00001.40, 00001.18], Mag (uT) [00001.50, -00050.40, 00049.20], Tmp (C) [00024.16] Scaled. Acc (mg) [-00087.89, -00004.39, 01024.90], Gyr (DFS) [00003.80, -00001.62, -00000.11], Mag (uT) [00001.50, -00050.40, 00049.20], Tmp (C) [00024.16] Scaled. Acc (mg) [-00085.36, -00002.32, 01017.09], Gyr (DFS) [00000.37, -00002.37, -00002.16], Mag (uT) [00001.55, -00050.57, 00050.70, 00505.7, 00050.70], Tmp (C) [00024.26] Scaled. Acc (mg) [-00096.19, 0007.32, 01017.09], Gyr (DFS) [00000.73, -00002.37, -00002.16], Mag (uT) [00002.10, -00050.55, 00050.70], Tmp (C) [00024.40] Scaled. Acc (mg) [-00100.59, -00002.44, 01021.97], Gyr (DFS) [00000.73, -00007.73, 00004.63], Mag (uT) [00002.30, -00050.10, 00050.10], Tmp (C) [00024.07] Scaled. Acc (mg) [-00100.59, -00002.44, 01021.97], Gyr (DFS) [00000.73, -00007.73, 00004.63], Mag (uT) [00002.25, -00050.70, 00050.10], Tmp (C) [00024.40] Scaled. Acc (mg) [-00100.59, -00002.44, 01021.97], Gyr (DFS) [00001.35, 00000.65, 00001.63], Mag (uT) [00002.25, -00050.70, 00049.95], Tmp (C) [00024.07] Scaled. Acc (mg) [-00100.59, -00002.93, 01012.21], Gyr (DFS) [-00000.80, 00001.38, -00004.44], Mag (uT) [00001.05, -00050.40, 00049.20], Tmp (C) [00024.35]	
Scaled. Acc (mg) [-00090.82, 00010.74, 01012.21], Gyr (DPS) [00001.40, 00000.82, 00001.05], Mag (uT) [00002.10, -00050.10, 00049.05], Tmp (C) [00024.16] Scaled. Acc (mg) [-00089.84, 00001.46, 01025.39], Gyr (DPS) [00001.19, 00000.60, 00002.05], Mag (uT) [00001.95, -00049.95, 00049.95], Tmp (C) [00024.16] Scaled. Acc (mg) [-00104.00, 00007.32, 01018.07], Gyr (DPS) [-00001.53, 00001.66, -00002.59], Mag (uT) [00002.70, -00051.45, 00048.75], Tmp (C) [00024.16] Scaled. Acc (mg) [-00087.89, -00003.91, 0101.74], Gyr (DPS) [-00000.18, 00001.04, 00001.18], Mag (uT) [00001.50, -00050.40, 00049.20], Tmp (C) [00024.16] Scaled. Acc (mg) [-00087.89, -00004.39, 01024.90], Gyr (DPS) [00003.80, -00001.62, -00002.11], Mag (uT) [00001.95, -00050.40, 00049.20], Tmp (C) [00024.26] Scaled. Acc (mg) [-00096.19, 00007.32, 01017.09], Gyr (DPS) [00000.19, 00002.37, -00002.16], Mag (uT) [00002.10, -00050.55, 000450.5], Tmp (C) [00024.26] Scaled. Acc (mg) [-00096.36, -00002.44, 01021.97], Gyr (DPS) [00000.73, -00002.73, -00002.16], Mag (uT) [00002.10, -00050.10, 00050.10], Tmp (C) [00024.40] Scaled. Acc (mg) [-00100.59, -00002.44, 01021.97], Gyr (DPS) [00001.35, 00000.65, 00001.63], Mag (uT) [00002.30, -00050.10, 00050.10], Tmp (C) [00024.07] Scaled. Acc (mg) [-0100.59, -00002.44, 01021.97], Gyr (DPS) [00001.35, 00000.65, 00001.63], Mag (uT) [00002.30, -00050.10, 00050.10], Tmp (C) [00024.07] Scaled. Acc (mg) [-0100.59, -00002.44, 01021.97], Gyr (DPS) [00001.35, 00000.65, 00001.63], Mag (uT) [00002.25, -00050.70, 00050.10], Tmp (C) [00024.07]	
Scaled. Acc (mg) [-00089.84, 00001.46, 01025.39], Gyr (DFS) [00001.19, 00000.60, 00002.05], Mag (uT) [00001.95, -00049.95, 00049.95], Tmp (C) [00024.16] Scaled. Acc (mg) [-00104.00, 00007.32, 01018.07], Gyr (DFS) [-00001.53, 00001.66, -00002.59], Mag (uT) [00002.70, -00051.45, 00048.75], Tmp (C) [00024.07] Scaled. Acc (mg) [-00087.89, -00003.91, 0101.74], Gyr (DFS) [-00001.8, 00001.04, 00001.18], Mag (uT) [00001.50, -00050.40, 00049.20], Tmp (C) [00024.16] Scaled. Acc (mg) [-00087.89, -00004.39, 01024.90], Gyr (DFS) [00003.80, -00001.62, -00000.11], Mag (uT) [00001.50, -00050.40, 00049.20], Tmp (C) [00024.26] Scaled. Acc (mg) [-00096.19, 00007.32, 01017.09], Gyr (DFS) [00000.19, 00002.37, -00002.16], Mag (uT) [00002.10, -00050.10, 00050.10, 100050.1], Tmp (C) [00024.35] Scaled. Acc (mg) [-0008.36, -00002.44, 01021.97], Gyr (DFS) [00000.73, -00000.73, 00004.63], Mag (uT) [00002.30, -00050.10, 00050.10], Tmp (C) [00024.40] Scaled. Acc (mg) [-00103.59, -00002.43, 01021.21], Gyr (DFS) [00001.35, 00000.65, 00001.63], Mag (uT) [00002.22, -00050.70, 00049.59], Tmp (C) [00024.07] Scaled. Acc (mg) [-00103.52, -00001.46, 01014.16], Gyr (DFS) [-00008.0, 00001.38, -00004.44], Mag (uT) [00001.05, -00050.40, 00049.50], Tmp (C) [00024.70]	
Scaled. Acc (mg) [-00104.00, 00007.32, 01018.07], Gyr (DPS) [-00001.53, 00001.66, -00002.59], Mag (uT) [00002.70, -00051.45, 00048.75], Tmp (C) [00024.07] Scaled. Acc (mg) [-00087.89, -00003.91, 01010.74], Gyr (DPS) [-00000.18, 00001.04, 00001.18], Mag (uT) [00001.50, -00050.40, 00049.20], Tmp (C) [00024.16] Scaled. Acc (mg) [-00087.89, -00004.39, 01024.90], Gyr (DPS) [00003.80, -00001.62, -00000.11], Mag (uT) [00001.95, -00050.70, 00050.70], Tmp (C) [00024.26] Scaled. Acc (mg) [-00096.19, 00007.32, 01017.09], Gyr (DPS) [00000.19, 00002.37, -00002.16], Mag (uT) [00002.10, -00050.50, 00049.05], Tmp (C) [00024.35] Scaled. Acc (mg) [-00089.36, -00002.44, 01021.97], Gyr (DPS) [00000.73, -00000.73, 00004.83], Mag (uT) [00002.25, -00050.70, 00050.10], Tmp (C) [00024.07] Scaled. Acc (mg) [-00103.59, -00002.44, 01012.197], Gyr (DPS) [00001.35, 00001.63], Mag (uT) [00002.25, -00050.70, 00049.55], Tmp (C) [00024.07] Scaled. Acc (mg) [-00103.52, -00001.46, 01014.16], Gyr (DPS) [-00000.80, 00001.38, -00004.44], Mag (uT) [00001.05, -00050.40, 00049.20], Tmp (C) [00024.35]	
Scaled. Acc (mg) [-00087.89, -00003.91, 01010.74], Gyr (DFS) [-00000.18, 00001.04, 00001.18], Mag (uT) [00001.50, -00050.40, 00049.20], Tmp (C) [00024.16] Scaled. Acc (mg) [-00096.19, 00007.32, 01024.90], Gyr (DFS) [00003.80, -00001.62, -00000.11], Mag (uT) [00001.95, -00050.70, 00050.70], Tmp (C) [00024.26] Scaled. Acc (mg) [-00096.19, 00007.32, 01017.09], Gyr (DFS) [00000.19, 00002.37, -00002.16], Mag (uT) [00002.10, -00050.50, 00049.50], Tmp (C) [00024.35] Scaled. Acc (mg) [-00089.36, -00002.44, 01021.97], Gyr (DFS) [00000.73, -00000.73, 00004.83], Mag (uT) [00003.30, -00050.50, 00045.05], Tmp (C) [00024.40] Scaled. Acc (mg) [-00103.59, -00002.43, 01012.21], Gyr (DFS) [00001.35, 00001.65, 00001.63], Mag (uT) [00002.25, -00050.70, 00045.95], Tmp (C) [00024.07] Scaled. Acc (mg) [-00103.52, -00001.46, 01014.16], Gyr (DFS) [-00000.80, 00001.38, -00004.44], Mag (uT) [00001.05, -00050.40, 00049.20], Tmp (C) [00024.35]	
Scaled. Acc (mg) [-00087.89, -00004.39, 01024.90], Gyr (DPS) [00003.80, -00001.62, -00000.11], Mag (uT) [00001.95, -00050.70, 00050.70], Tmp (C) [00024.26] Scaled. Acc (mg) [-00096.19, 00007.32, 01017.09], Gyr (DPS) [00000.19, 00002.37, -00002.16], Mag (uT) [00002.10, -00050.55, 00049.05], Tmp (C) [00024.35] Scaled. Acc (mg) [-00089.36, -00002.44, 01021.97], Gyr (DPS) [00000.73, -00000.73, 00004.83], Mag (uT) [00003.30, -00050.10, 00050.10], Tmp (C) [00024.40] Scaled. Acc (mg) [-00100.59, -00002.93, 01012.21], Gyr (DPS) [00001.35, 00000.65, 00001.63], Mag (uT) [00002.25, -00050.70, 00049.95], Tmp (C) [00024.07] Scaled. Acc (mg) [-00103.52, -00001.46, 01014.16], Gyr (DPS) [-00000.80, 00001.38, -00004.44], Mag (uT) [00001.05, -00050.40, 00049.20], Tmp (C) [00024.35]	
Scaled. Acc (mg) [-00096.19, 00007.32, 01017.09], Gyr (DPS) [00000.19, 00002.37, -00002.16], Mag (uT) [00002.10, -00050.55, 00049.05], Tmp (C) [00024.35] Scaled. Acc (mg) [-00089.36, -00002.44, 01021.97], Gyr (DPS) [00000.73, -00000.73, 00004.83], Mag (uT) [00003.30, -00050.10, 00050.10], Tmp (C) [00024.40] Scaled. Acc (mg) [-00100.59, -00002.93, 01012.21], Gyr (DPS) [00001.35, 00000.65, 00001.63], Mag (uT) [00002.25, -00050.70, 00049.95], Tmp (C) [00024.07] Scaled. Acc (mg) [-00103.52, -00001.46, 01014.16], Gyr (DPS) [-00000.80, 00001.38, -00004.44], Mag (uT) [00001.05, -00050.40, 00049.20], Tmp (C) [00024.35]	
Scaled. Acc (mg) [-00100.59, -00002.93, 01012.21], Gyr (DPS) [00001.35, 00000.65, 00001.63], Mag (uT) [00002.25, -00050.70, 00049.95], Tmp (C) [00024.07] Scaled. Acc (mg) [-00103.52, -00001.46, 01014.16], Gyr (DPS) [-00000.80, 00001.38, -00004.44], Mag (uT) [00001.05, -00050.40, 00049.20], Tmp (C) [00024.35]	
Scaled. Acc (mg) [-00103.52, -00001.46, 01014.16], Gyr (DPS) [-00000.80, 00001.38, -00004.44], Mag (uT) [00001.05, -00050.40, 00049.20], Tmp (C) [00024.35]	
Scaled. Acc (mg) [-00095.21, -00000.49, 01015.14], Gyr (DPS) [00000.66, -00000.41, 00001.28], Mag (uT) [00001.95, -00051.00, 00049.20], Tmp (C) [00024.45]	
Autoscroll Show timestamp	lear output

Prof. Kirstin Hagelskjær Petersen kirstin@cornell.edu



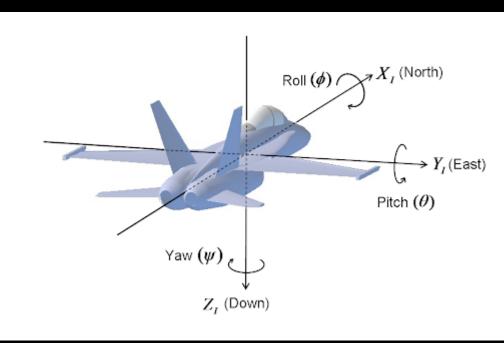
ACCELEROMETER



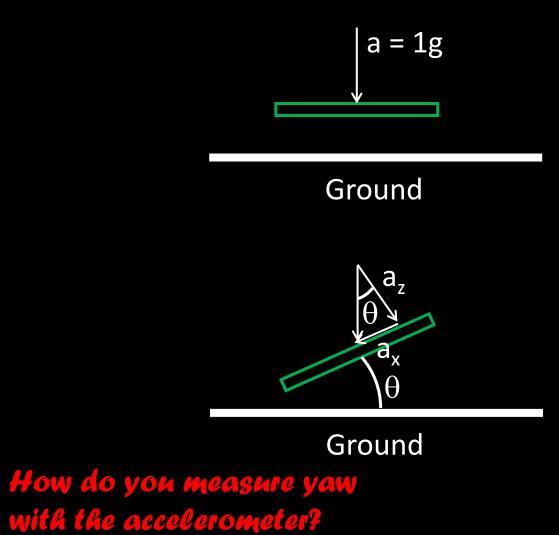


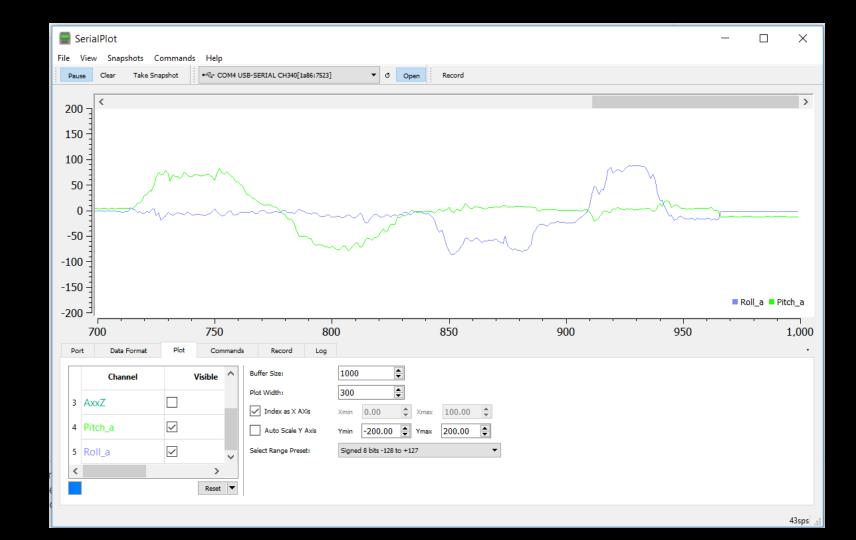
suspended conductive material conductive beams (fixed)

- Measuring acceleration in 3D
- Micro-Electro-Mechanical Systems



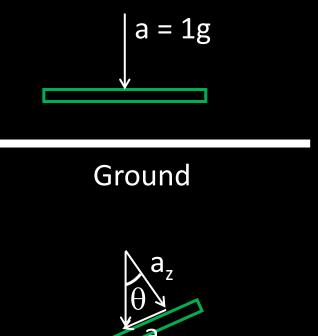
- Measuring acceleration in 3D
- Use Arduino Serial Monitor or a program like SerialPlot to visualize your data



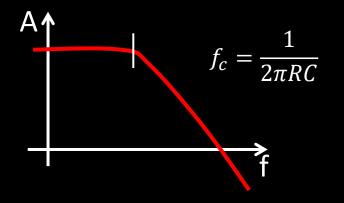

• How to use the accelerometer to determine roll, tilt, and yaw?

- $a_x = 1g \sin \theta$
- $a_z = 1g \cos \theta$
- $a_x / a_z = \tan \theta$
 - $\theta = \operatorname{atan}(a_x/a_z) \quad \bullet \quad \phi = \operatorname{atan}(a_y/a_z)$
 - Remember, use atan2!

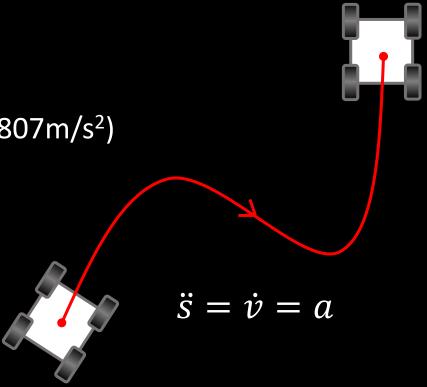
- Determining tilt and roll
- $\theta = \operatorname{atan}(a_x/a_z)$
- $\phi = \operatorname{atan}(a_y/a_z)$



• Determining tilt and roll

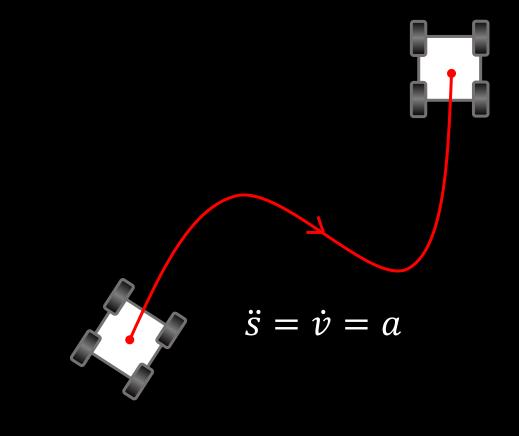

T+RC

- Good (very accurate on average) vs Bad (noisy)
- Low pass complimentary filter


•
$$\theta_{\text{LPF}}[n] = \alpha * \theta + (1 - \alpha) * \theta_{\text{LPF}}[n-1]$$

• $\theta_{\text{LPF}}[n-1] = \theta_{\text{LPF}}[n]$
• $\alpha = \frac{T}{T}$

Ground

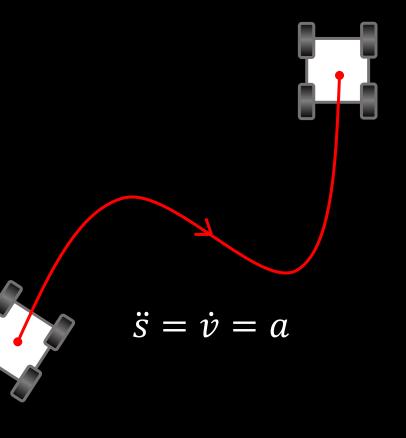

- Determining tilt and roll
- How to use the accelerometer to do dead reckoning?
 - $v = \int a$
 - s= $\int \int a$
 - v[k+1]=v[k]+a[k]*dt
 - s[k+1]=s[k]+v[k]*dt
- *Remember:* The accelerometer output is in mg (1g = 9.807m/s²)

- Determining tilt and roll
- How to use the accelerometer to do dead reckoning?
 - *Issue:* Distinguishing acceleration of the sensor from gravitational acceleration

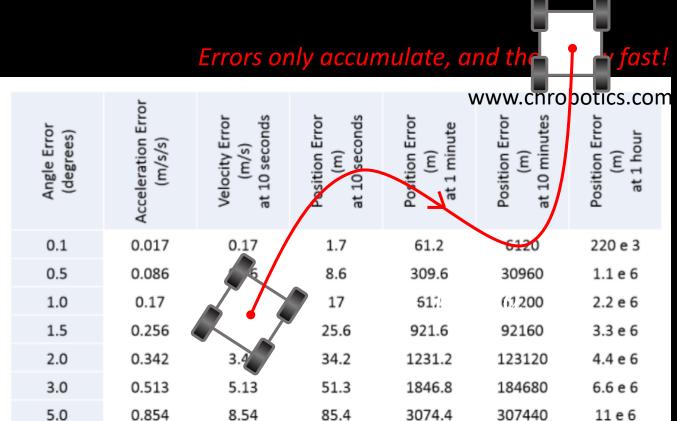
×

COM3		- 🗆
Waiting for data		
dt= 0.01s, Acc = -0.01mg,	Speed = $-0.01m/s$, Dis = $-0.00m$	
dt= 0.01s, Acc = -0.04mg,	Speed = -0.03m/s, Dis = -0.01m	
dt= 0.01s, Acc = -0.15mg,	Speed = $-0.07m/s$, Dis = $-0.03m$	
dt= 0.01s, Acc = -0.15mg,	Speed = -0.13m/s, Dis = -0.06m	
dt= 0.01s, Acc = -0.17mg,	Speed = $-0.19m/s$, Dis = $-0.12m$	
dt= 0.01s, Acc = -0.17mg,	Speed = -0.26m/s, Dis = -0.19m	
dt= 0.01s, Acc = -0.18mg,	Speed = -0.34m/s, Dis = -0.30m	
dt= 0.01s, Acc = -0.21mg,	Speed = $-0.41m/s$, Dis = $-0.43m$	
dt= 0.01s, Acc = -0.22mg,	Speed = -0.50m/s, Dis = -0.58m	
dt= 0.01s, Acc = -0.25mg,	Speed = -0.59m/s, Dis = -0.77m	
dt= 0.01s, Acc = -0.27mg,	Speed = -0.69m/s, Dis = -0.99m	
dt= 0.01s, Acc = -0.28mg,	Speed = $-0.79m/s$, Dis = $-1.25m$	
dt= 0.01s, Acc = -0.29mg,	Speed = -0.90m/s, Dis = -1.54m	
dt= 0.01s, Acc = -0.31mg,	Speed = -1.02m/s, Dis = -1.87m	
dt= 0.01s, Acc = -0.32mg,	Speed = $-1.14m/s$, Dis = $-2.24m$	
dt= 0.01s, Acc = -0.34mg,	Speed = -1.26m/s, Dis = -2.66m	
dt= 0.01s, Acc = -0.35mg,	Speed = -1.39m/s, Dis = -3.12m	
dt= 0.01s, Acc = -0.36mg,	Speed = -1.52m/s, Dis = -3.62m	
dt= 0.01s, Acc = -0.35mg,	Speed = -1.65m/s, Dis = -4.17m	
dt= 0.01s, Acc = -0.36mg,	Speed = -1.79m/s, Dis = -4.76m	
dt= 0.01s, Acc = -0.36mg,	Speed = -1.92m/s, Dis = -5.40m	
dt= 0.01s, Acc = -0.34mg,	Speed = -2.05m/s, Dis = -6.09m	
dt= 0.01s, Acc = -0.35mg,	Speed = -2.18m/s, Dis = -6.82m	
dt= 0.01s, Acc = -0.37mg,	Speed = $-2.32m/s$, Dis = $-7.60m$	
dt= 0.01s, Acc = -0.38mg,	Speed = -2.46m/s, Dis = -8.43m	

Newline

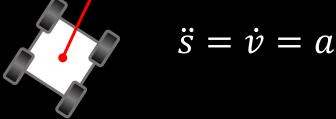

- Determining tilt and roll
- How to use the accelerometer to do dead reckoning?
 - *Issue:* Distinguishing acceleration of the sensor from gravitational acceleration
 - Solution 1: Calibrate the offset

© COM4 —	×	
	Send	
Initialization of the sensor returned: All is well.	^	
dt= 0.27s, Acc = -0.00mg, Speed = 0.56m/s, Dis = 0.09m		
dt= 0.01s, Acc = -0.01mg, Speed = 0.56m/s, Dis = 0.28m		
dt= 0.01s, Acc = 0.01mg, Speed = 0.56m/s, Dis = 0.47m		
dt= 0.01s, Acc = 0.00mg, Speed = 0.56m/s, Dis = 0.66m		
dt= 0.01s, Acc = -0.01mg, Speed = 0.56m/s, Dis = 0.85m		
dt= 0.01s, Acc = 0.01mg, Speed = 0.56m/s, Dis = 1.04m		
dt= 0.01s, Acc = 0.00mg, Speed = 0.56m/s, Dis = 1.23m		
dt= 0.01s, Acc = -0.01mg, Speed = 0.56m/s, Dis = 1.42m		
dt= 0.01s, Acc = 0.01mg, Speed = 0.56m/s, Dis = 1.61m		
dt= 0.01s, Acc = 0.00mg, Speed = 0.56m/s, Dis = 1.80m		
dt= 0.01s, Acc = -0.00mg, Speed = 0.56m/s, Dis = 1.99m		
dt= 0.01s, Acc = -0.00mg, Speed = 0.56m/s, Dis = 2.18m		
dt= 0.01s, Acc = -0.02mg, Speed = 0.55m/s, Dis = 2.37m		
dt= 0.01s, Acc = -0.00mg, Speed = 0.55m/s, Dis = 2.55m		
dt= 0.01s, Acc = -0.02mg, Speed = 0.55m/s, Dis = 2.74m		
dt= 0.01s, Acc = -0.00mg, Speed = 0.54m/s, Dis = 2.93m		
dt= 0.01s, Acc = -0.02mg, Speed = 0.54m/s, Dis = 3.11m		
dt= 0.01s, Acc = -0.01mg, Speed = 0.54m/s, Dis = 3.29m		
dt= 0.01s, Acc = 0.00mg, Speed = 0.53m/s, Dis = 3.47m		
$dt = 0.01e$ $\lambda_{CC} = -0.01mc$ Speed = 0.53m/e Die = 3.66m	~	
	lear output	



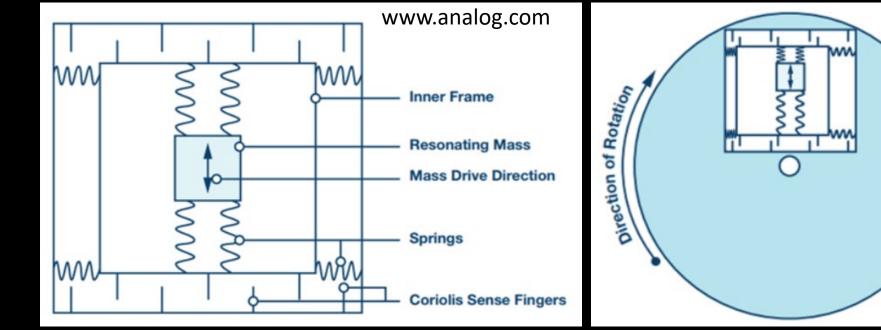
- Determining tilt and roll
- How to use the accelerometer to do dead reckoning?
 - Issue: Distinguishing acceleration of the sensor from gravitational acceleration
 - Solution 1: Calibrate the offset
 - Solution 2: Low pass filter the output
 - Solution 3: Minimum signal cut-off

🥯 C(OM4									—		(
											Sen	d
dt= 0).27s,	Acc =	0.00mg,	Speed = 0.00m/s,	Dis =	0.00m						^
dt= 0).01s,	Acc =	0.00mg,	Speed = 0.00m/s,	Dis =	0.00m						
dt= 0).01s,	Acc =	0.00mg,	Speed = 0.00m/s,	Dis =	0.00m						
dt= 0).01s,	Acc =	0.00mg,	Speed = 0.00m/s,	Dis =	0.00m						
dt= 0).01s,	Acc =	0.00mg,	Speed = 0.00m/s,	Dis =	0.00m						
dt= 0).01s,	Acc =	0.00mg,	Speed = 0.00m/s,	Dis =	0.00m						
dt= 0).01s,	Acc =	0.00mg,	Speed = 0.00m/s,	Dis =	0.00m						
dt= 0).01s,	Acc =	0.00mg,	Speed = 0.00m/s,	Dis =	0.00m						
dt= 0).01s,	Acc =	0.00mg,	Speed = 0.00m/s,	Dis =	0.00m						
dt= 0).01s,	Acc =	0.02mg,	Speed = 0.01m/s,	Dis =	0.00m						
dt= 0).01s,	Acc =	0.00mg,	Speed = 0.01m/s,	Dis =	0.00m					_	
dt= 0).01s,	Acc =	4.40mg,	Speed = $0.93m/s$,	Dis =	0.12m	←───	~10cm	displa	acen	nent	
dt= 0).01s,	Acc =	0.24mg,	Speed = $1.54m/s$,	Dis =	0.58m	-	20011				
dt= 0).01s,	Acc =	0.01mg,	Speed = $1.58m/s$,	Dis =	: 1.11m						
dt= 0).01s,	Acc =	0.00mg,	Speed = $1.59m/s$,	Dis =	: 1.65m						×
Aut	toscroll [Show t	timestamp	na in particul face at the second second	ding wat	a anali. Pilanna	fel pour radical to liter	Newline	∨ 115200 b	aud 🖂	Clear outpu	t



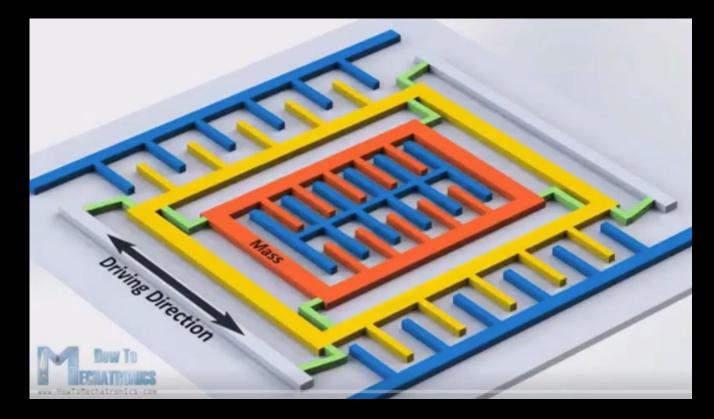
- Determining tilt and roll
- How to use the accelerometer to do dead reckoning?
 - *Issue:* Distinguishing acceleration of the sensor from gravitational acceleration
 - Solution 1: Calibrate the offset
 - *Solution 2:* Low pass filter the output
 - Solution 3: Minimum signal cut-off

- Determining tilt and roll
- How to use the accelerometer to do dead reckoning?
 - *Issue:* Distinguishing acceleration of the sensor from gravitational acceleration
 - Solution 1: Calibrate the offset
 - *Solution 2:* Low pass filter the output
 - Solution 3: Minimum signal cut-off
 - Solution 4: Stop periodically and zero the velocity
 - Solution 5: Use in combination with TOF sensor on straight line segments
 - Solution 6: Buy a more expensive IMU
 - etc...

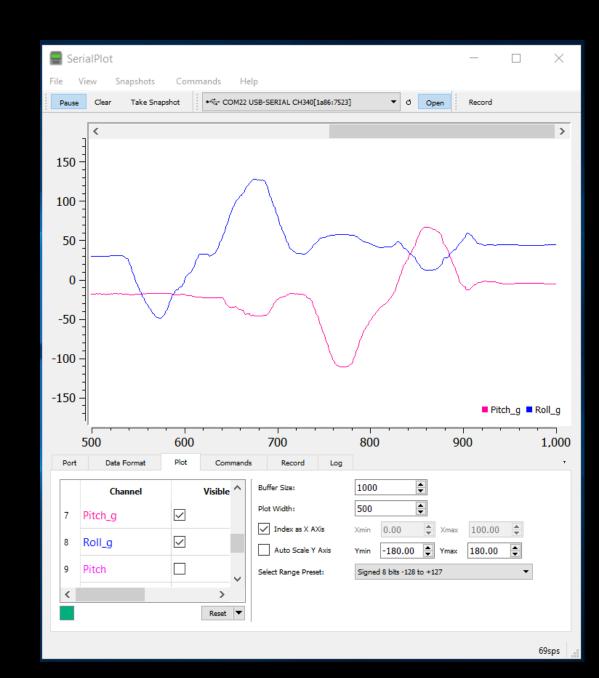

ECE 4960

Prof. Kirstin Hagelskjær Petersen kirstin@cornell.edu

GYROSCOPE



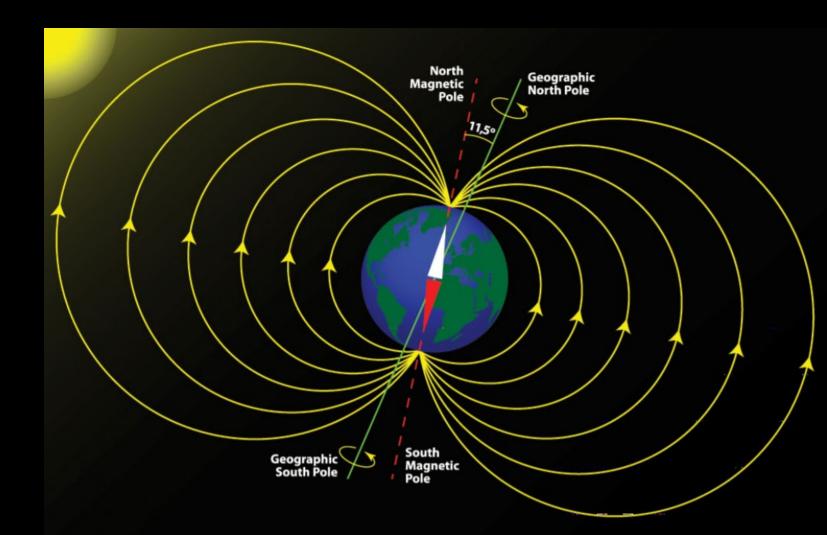
• Measures the rate of angular change [deg/s]

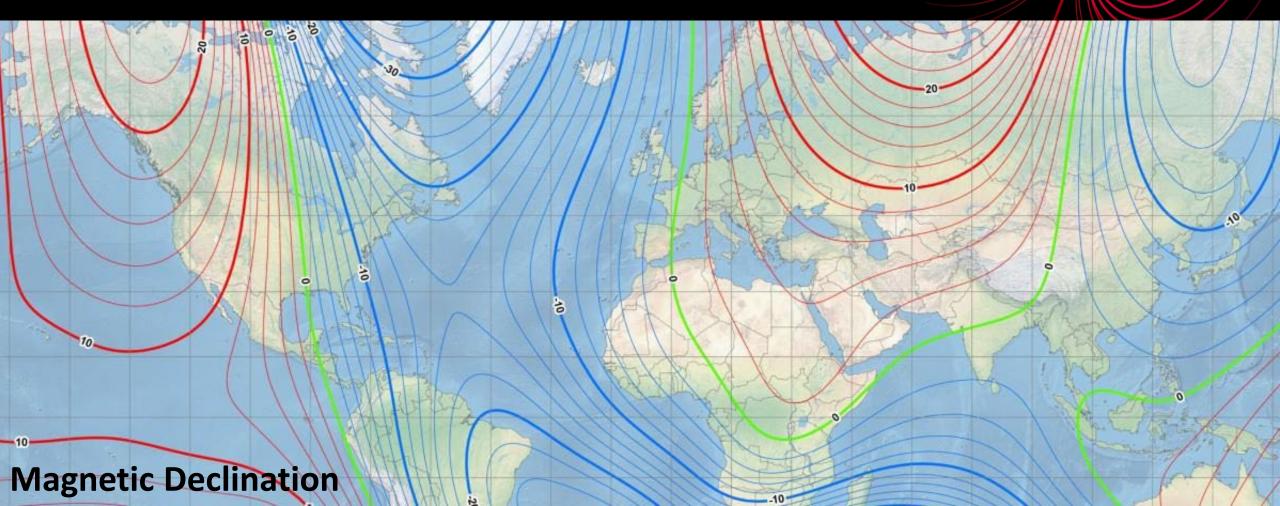


• Measures the rate of angular change [deg/s]

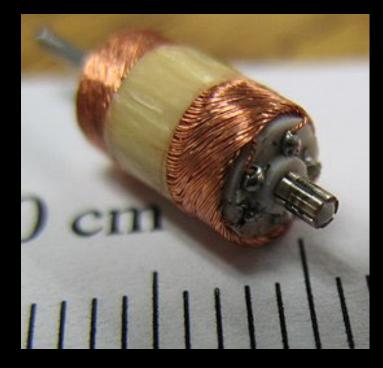
- Measures the rate of angular change [deg/s]
- How to use the gyroscope to measure angles?
 - $\theta_{g} = \theta_{g} gyr_reading*dt$
- Drift, but low noise

- Measures the rate of angular change [deg/s]
- How to use the gyroscope to measure angles?
 - $\theta_{g} = \theta_{g} gyr_reading*dt$
- Drift, but low noise
 - Complimentary to the accelerometer!
- Complimentary filter:

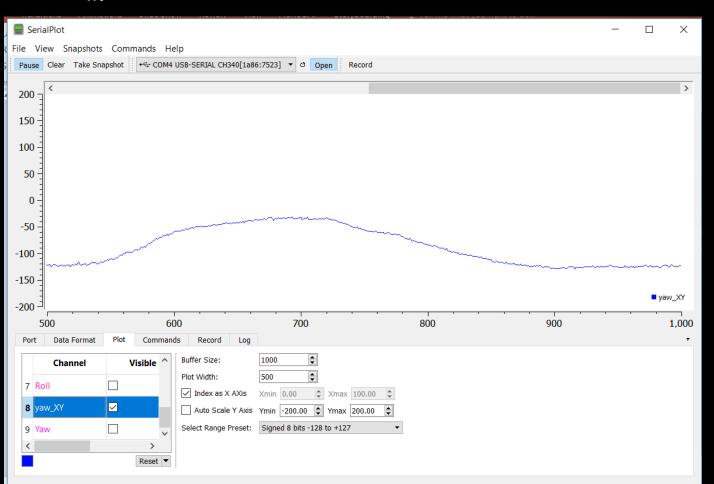

•
$$\theta = (\theta + \theta_g * dt) (1-\alpha) + \theta_a \alpha$$

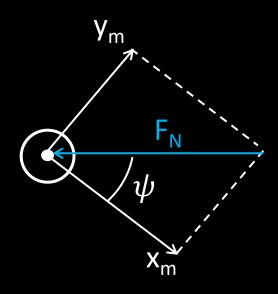

Can we also estimate yaw?

• Yes! (but there is no complementary data from the accelerometer)

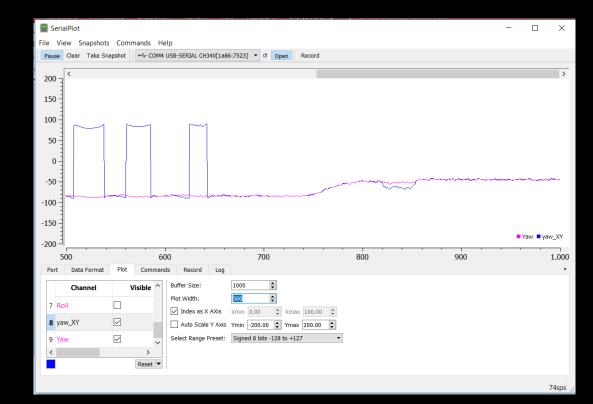

- Measure the Earth's magnetic field [Gauss] or [uT]
- The actual direction depends on latitude, longitude, and time

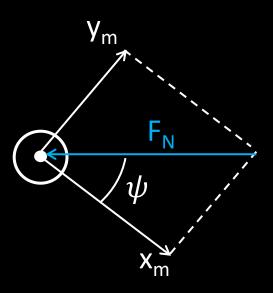
- Measure the Earth's magnetic field [Gauss] or [uT]
- The actual direction depends on latitude, longitude, and time
- Distortions due to metal objects or nearby EM fields




- Measure the Earth's magnetic field [Gauss] or [uT]
- The actual direction depends on latitude, longitude, and time
- Distortions due to metal objects or nearby EM fields
 - Examples?

- Measure the Earth's magnetic field [Gauss] or [uT]
- $\psi = \operatorname{atan}\left(\frac{y_m}{x_m}\right)$


- Measure the Earth's magnetic field [Gauss] or [uT]
- $\psi = \operatorname{atan}\left(\frac{y_m}{x_m}\right)$
- What if you are also experiencing pitch and roll?
 - Fuse accelerometer + gyroscope + magnetometer data
- Tilt-compensated compass
 - $\begin{bmatrix} x_m \\ y_m \\ z_m \end{bmatrix} = R_{x,\phi} R_{y,\theta} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$


•
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = R_{x,\phi}{}^T R_{y,\theta}{}^T \begin{bmatrix} x_m \\ y_m \\ z_m \end{bmatrix} = \begin{bmatrix} \cos(\theta) & 0 & -\sin(\theta) \\ \sin(\phi)\sin(\theta) & \cos(\phi) & \cos(\theta)\sin(\phi) \\ \cos(\phi)\sin(\theta) & -\sin(\phi) & \cos(\phi)\cos(\theta) \end{bmatrix} \begin{bmatrix} x_m \\ y_m \\ z_m \end{bmatrix}$$

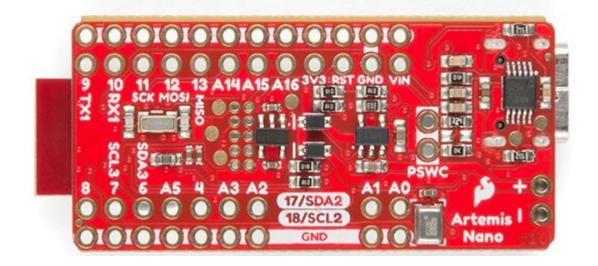
•
$$x = y_m * \cos(\phi) - z_m * \sin(\phi);$$

- $y = x_m^* \cos(\theta) + y_m^* \sin(\phi)^* \sin(\theta) + z_m^* \cos(\phi)^* \sin(\theta)$;
- ψ = atan2(y,x)

- Measure the Earth's magnetic field [Gauss] or [uT]
- $\psi = \operatorname{atan}\left(\frac{y_m}{x_m}\right)$
- What if you are also experiencing pitch and roll?
 - Fuse accelerometer + gyroscope + magnetometer data
- Tilt-compensated compass

Sources and References

- <u>http://www.chrobotics.com/library/accel-position-velocity</u>
- EE 267 Virtual Reality, by Gordon Wetzstein at Stanford University
- Analog.com
- <u>https://toptechboy.com/</u>



Lab 3: Sensors

- Connect to TOF sensors and IMU
- Understand and process data
- Route wires and solder connections (get this done during lab!!)
 - Permanent solder joints / Detachable connections?
 - Single core or braided wires?
 - Routing of TOF sensors, IMU, motor drivers, Artemis, battery for motors and battery for the processor
- Mechanical mounting components (optional)

Lab 3: Sensors (pre-lab)

Draw the connection diagram that you intend to use

GND

VMM

BIN1

BIN2

AIN2

AIN1

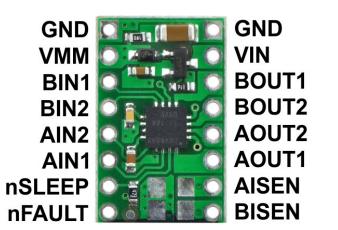
nSLEEP

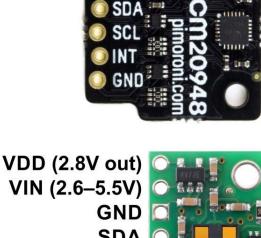
nFAULT

GND

VIN

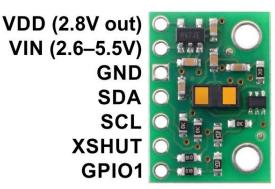
BOUT1

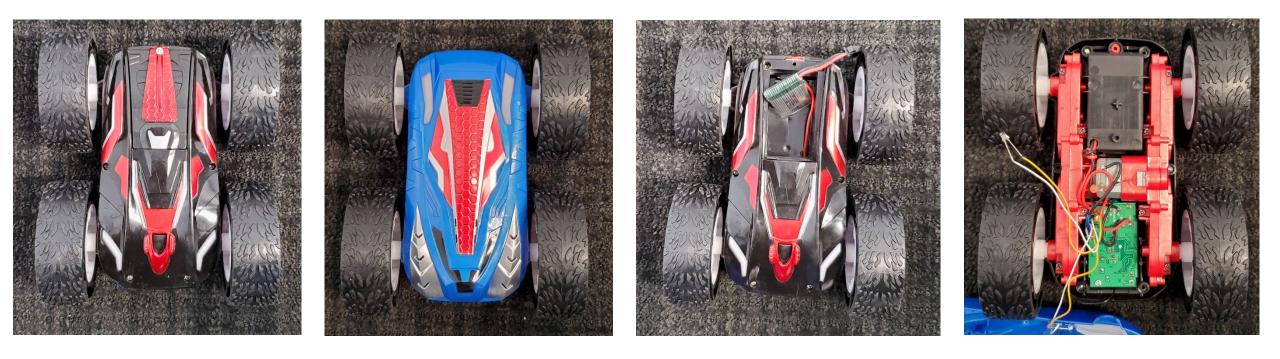

BOUT2


AOUT2

AOUT1

AISEN


BISEN


2-6V

Lab 3: Sensors (pre-lab)

Think about the placement of components and batteries

