ECE 4960

Prof. Kirstin Hagelskjær Petersen kirstin@cornell.edu

Fast Robots

Feedback Control

- Maintaining speed prediction at different battery levels and over different surfaces
- Mapping: evenly spaced out sensor readings
- Path execution: adhere to generated path plans

Common things to address:

Derivative low pass filter

Integrator wind-up

ightarrow

ullet

Tuning PID control

Tuning PID control

Fig.7. Open loop response of CHR method

Table.11. CHR Compensator

Type of controller	K _p	Ti	T _d
PID	0.6Tg/TuKg	Tg	0.5T _u

• Chien, Hornes, and Reswick method

ECE4960 Fast Robots

PID control

- Heuristic procedure #1:
 - Set Kp to small value, KD and KI to 0
 - Increase KD until oscillation, then decrease by factor of 2-4
 - Increase KP until oscillation or overshoot, decrease by factor of 2-4
 - Increase KI until oscillation or overshoot
 - Iterate
- Heuristic procedure #2:
 - Set KD and KI to 0
 - Increase KP until oscillation, then decrease by factor of 2-4
 - Increase KI until loss of stability, then back off
 - Increase KD to increase performance in response to disturbance
 - Iterate

Tuning PID control

- Equations of motion
 - First order system...

PID control for constant angular speed, $\dot{\theta}$

• https://bit.ly/3LIAxae

0	PID-ECE4960FastRobots.ipynb - C × +	~ - 0 ×
←	C a colab.research.google.com/drive/1F-iZnkXpKLOP6C4EZoSbmBm68C002yBk?usp=sharing#scrollTo=c3o7-sdaT8nq	🖻 🛧 💽 🗯 🗊 😨 :
. A	Apps 📙 MPI 🧧 Corneli 📀 Passkey 🌵 CEI-Lab Slack 🌵 ECE Robotics @ Cor 🌵 Slack STC CROPPS 🚏 Slack ECE 4960: Fa 🐧 COOL MAS site 🔗 ECE 4960/5960: Fas 🕎 petersen	Other bookmarks 📰 Reading list
C	PID-ECE4960FastRobots.ipynb ☆ File Edit View Insert Runtime Tools Help <u>All changes saved</u>	Comment 🚢 Share 🌣 🐲
⊨	+ Code + Text	✓ RAM Link → Editing ∧
Q	Notebook for Designing PID controller	
{ <i>x</i> }	<pre>> [37] from matplotlib import pyplot as plt import numpy as np </pre>	
	ECE 4960: Designing a PID controller	
	<pre>class System: definit(self,</pre>	
	<pre>def step(self,u): self x = self x + self dt * (on dot(self A self x) + u*self R)</pre>	

PID control for constant angular speed, $\dot{\theta}$

• https://bit.ly/3LIAxae

• Heuristic procedure #1:

- Set Kp to small value, KD and KI to 0
- Increase KD until oscillation, then decrease by factor of 2-4
- Increase KP until oscillation or overshoot, decrease by factor of 2-4
- Increase KI until oscillation or overshoot
- Iterate
- Heuristic procedure #2:
 - Set KD and KI to 0
 - Increase KP until oscillation, then decrease by factor of 2-4
 - Increase KI until loss of stability, then back off
 - Increase KD to increase performance in response to disturbance
 - Iterate

PID control for constant angular speed, $\dot{\theta}$

- https://bit.ly/3LIAxae
- Overshoot (K_p = 10, K_l = 100)
- Dampening $(K_p = 10, K_l = 100, K_D = 0.8)$
- Noise (sigma = 0.1)
- LPF (alpha = 0.05)
- Derivative kick (alpha = 1, sigma = 0)

PID control of a 2nd order system

Lab 6, PID control

- PID control on angular speed (gyroscope)
 - Lab 9 mapping (as slow as possible)
- PID control on speed (accelerometer, tof)
 - Lab 13 path execution
- PID control on distance from wall (gyroscope and tof)
 - Lab 13 path execution
- PID control on a position (tof)
- PID control on an angle (gyroscope)

Biggest limitation?

- Sensor sampling time
- PID control is preferably 5-10 times faster than your system
- Lab 7 Kalman Filter
- Lab 8 Stunts
 - Open loop category
 - Closed-loop category

Next three lectures

- Control theory
 - Linear systems
 - Eigenvectors
 - Stability
 - Controllability
 - Observability
 - Kalman filters

$$\dot{x} = Ax + Bu$$

These should look familiar from..

- MATH 2940 Linear Algebra
- ECE3250 Signals and systems
- ECE5210 Theory of linear systems
- MAE3260 System Dynamics
- etc...

