ECE 4160/5160
 MAE 4910/5910

Prof. Kirstin Hagelskjær Petersen kirstin@cornell.edu

Fast Robots

Lab 6

Probability and Bayes Theorem

ECE 4160/5160 MAE 4910/5910

Prof. Kirstin Hagelskjær Petersen kirstin@cornell.edu

Lab Prep

Lab 6: PID control

Lab 7: Sensor Fusion

Lab 8: Stunt

Credit: Anya Prabowo, 2022

Lab 6: PID control

- Task A: Position control
- Benefit: Easiest

Lab 6: PID control

- Task A: Position control
- Task B: Orientation control
- Benefit: Good start to lab 9

FastRobots2023

ECE4160/5160-MAE 4190/5190: Fast Robots course, offered at Cornell University in Spring 2023

View On GitHub

This project is maintained by CEI-lab

Fast Robots @Cornell,Spring 2023
Return to main page
Lab 6: Closed-loop control (PID)

Objective

The purpose of this lab is to get experience with PID control. The lab is fairly open ended, you can pick whatever controller works best for your system. 4000-level students can choose between P, PI, PID, PD; 5000-level students can choose between PI and PID controllers. Your hand-in will be judged upon your demonstrated understandi your solution.

Good examples from last year:

- Orientation control
- https://kr397.github.io/ece4960-labs/lab6.html
- Position control
- https://bwagner2-git.github.io/lab6

Lab 6-8: PID control - Sensor Fusion - Stunt

- Task A: Position control
- Task B: Orientation control

Procedure

- Lab 6: Get basic PID to work
- Do the pre-lab: you need good debugging scripts
- Start simple and work your way up, then hack away...
- Start slow (sampling rates, control frequency)
- Avoid blocking statements
- Wind-up, derivative LPF, derivative kick
- Motor scaling function
- Range of analogWrite: [0;255]
- Directionality
- Deadband
ECE 4160/5160

Fast Robots

Probability and Bayes Theorem

Recap from ECE 3100 Intro to Probability and Inference

- Random variable
- $X: \Omega \rightarrow \mathbb{R}$
- The probability that the random variable X has value x
- $P(X=x)$ or $p(x)$
- Probabilities sum to 1
- $\sum_{x} P(X=x)=1$
- Probabilities are always greater than 0
- $P(X=x) \geq 0$
- Joint distribution Y
- $p(x, y)=P(X=x$ and $Y=y)$
- Conditional probability
- $p(x \mid y)=\frac{p(x, y)}{p(y)}$
- Mean
- $\mu=-9.97306 m g$
- std dev
- $\sigma=7.0318 \mathrm{mg}$
- Variance
- σ^{2}
- Gaussian distributions
- $[\mu \mp \sigma]$
- Symmetric
- Unimodal
- Sum to "unity"

Conditional probability

- $p(x \mid y)=\frac{p(x, y)}{p(y)}$
- Robot/sensor example
- Exercise
- Two children, the older is female, what is the probability that the second child is female?
- 50\%
- Two children, one is female, what is the
 probability that the second child is female?
- 33\%
- F-M, F-F, M-F, (M-M)

Recap from ECE 3100 Intro to Probability and Inference

- Random variable
- $X: \Omega \rightarrow \mathbb{R}$
- The probability that the random variable X has value x :
- $P(X=x)$ or $p(x)$
- Probabilities sum to 1
- $\sum_{x} P(X=x)=1$
- Probabilities are always greater than 0
- $P(X=x) \geq 0$
- Joint distribution Y
- $p(x, y)=P(X=x$ and $Y=y)$
- Conditional probability
- $p(x \mid y)=\frac{p(x, y)}{p(y)}$
- Marginal probability
- $p(x)=\sum_{y} p(x \mid y) p(y)$
- Independence
- $p(x, y)=p(x) p(y)$
- $p(x \mid y)=p(x)=\frac{p(x, y)}{p(y)} \quad$ (Coin example)
- If X and Y are conditionally independent given $Z=z$, then
- $p(x, y \mid z)=p(x \mid z) p(y \mid z)$

Why consider uncertainty?

- Uncertainty is inherent in the world
- Five major factors
- Unpredictable environments
- Sensors
- Subject to physical laws
- Signal to noise ratio
- Robot motion
- Noise, wear and tear, battery state, etc.
- Accuracy versus cost
- Models
- Abstractions of the real world
- Computation
- Real time systems
- Timely response versus accuracy

Exercise

- Is this dress black and royal blue, or white and gold?
- Where does the uncertainty come from?
- blue and black under a yellow-tinted illumination (left)
- white and gold under a blue-tinted illumination (right)

Robot-Environment Model

Probabilistic Approach

"A robot that carries a notion of its own uncertainty and that acts accordingly is superior to one that does not."

- Probabilistic Robotics by Thrun, Burgard, Fox
- Probabilistic approaches in contrast to traditional model-based motion planning techniques or reactive behavior-based motion:
- tend to be more robust to sensor and model limitations
- weaker requirements on the accuracy of the robot's models

Probabilistic Approach

+ Explicitly represent the uncertainty using probability theory
+ Accommodate inaccurate models
+ Accommodate imperfect sensors
+ Robust in real-world applications
+ Best known approach to many hard robotics problems
- Computationally demanding
- Need to approximate

False assumptions

Is Robotics Going Statistics? The Field of Probabilistic Robotics

> Sebastian Thrun
> School of Computer Science
> Carnegie Mellon University
> http://www.cs.cmu.edu/~thrun
draft, please do not circulate

Abstract

Bayesian Inference

- Inference = educated guessing
- Bayesian inference = guessing in the style of Bayes
- Example
- EdDiscussion: "My robot stopped moving, the hardware is broken, send me new parts"
- What is the probability that the robot is broken, given that it stopped moving?
no motionmotion

working

Bayesian Inference

- Inference = educated guessing
- Bayesian inference = guessing in the style of Bayes
- Example
- EdDiscussion: "My robot stopped moving, the hardware is broken, send me new parts"
- What is the probability that the robot is broken, given that it stopped moving?

제 no motionmotion

Bayesian Inference

- Inference = educated guessing
- Bayesian inference = guessing in the style of Bayes
- Example
- EdDiscussion: "My robot stopped moving, the hardware is broken, send me new parts"
- Translate to probability
- P(something) = \#something / \#everything
broken working
40
- Before lab 8:
- $\mathrm{P}($ broken $)=$ \#broken / \#kits = $20 / 100=0.2$
- P(working) = \#working / \#kits = $80 / 100=0.8$
- After lab 8:
- $P($ broken $)=$ \#broken $/ \# k i t s=50 / 100=0.5$
- P(working) = \#working / \#kits = $50 / 100=0.5$
broken working

	32
19	
	48
1	

Bayesian Inference

- Inference = educated guessing
- Bayesian inference = guessing in the style of Bayes
- Example
- EdDiscussion: "My robot stopped moving, the hardware is broken, send me new parts"
- What is the probability that the robot is broken, given that it stopped moving?
- Conditional Probability
- If you know that the robot is broken, what is the probability that it stopped moving?
- P(no motion | broken) = \#broken and no motion / \#broken
broken working
19
19
1
1

Bayesian Inference

- Inference = educated guessing
- Bayesian inference = guessing in the style of Bayes
- Example
- EdDiscussion: "My robot stopped moving, the hardware is broken, send me new parts"
broken working

48	20
	30
2	

- Conditional Probability
- If you know that the robot is broken, what is the probability that it stopped moving?
- P(no motion | broken) = \#broken and no motion / \#broken
broken working
- Before lab $8=19 / 20=0.96$
- P(no motion | working) = \#working and no motion / \#working

	32
19	
	48
1	

Bayesian Inference

- Inference = educated guessing
- Bayesian inference = guessing in the style of Bayes
- Example
- EdDiscussion: "My robot stopped moving, the hardware is broken, send me new parts"
- Conditional Probability
- If you know that the robot is broken, what is the probability that it stopped moving?
- $P(A \mid B)$ is the probability of A, given B
- Note: $P(A \mid B)$ is not equal to $P(B \mid A)$
- $P($ cute \mid puppy $) \neq \mathrm{P}$ (puppy|cute)
broken working

48	20
	30
2	

broken working

	32
19	
	48
1	

Bayesian Inference

- Inference = educated guessing
- Bayesian inference = guessing in the style of Bayes
- Example
- EdDiscussion: "My robot stopped moving, the hardware is broken, send me new parts"
broken working

48	20
	30
2	

- Joint Probability

- What is the probability that the robot is both broken and not moving?
- After lab 8:
- $P($ broken and not moving)
broken working

	32
19	
	48
1	

Bayesian Inference

broken working

- Inference = educated guessing
- Bayesian inference = guessing in the style of Bayes
- Example
40

- Joint Probability

$\mathrm{P}($ working $)=0.80$

- What is the probability that the robot is both broken and not moving?
- P (broken and not moving)

$$
=P(\text { broken }) * P \text { (not moving | broken) }
$$

$$
=0.20 * 0.96=0.192
$$

Bayesian Inference

- Inference = educated guessing
- Bayesian inference = guessing in the style of Bayes
- Example
- EdDiscussion: "My robot stopped moving, the hardware is broken, send me new parts"

- Joint Probability

- What is the probability that the robot is both broken and not moving?
- $P(A, B)=P(A \cap B)=P(A$ and $B)$
- $P(A, B)=P(A) * P(B \mid A)$
- $P(A, B)=P(B, A)$

broken working	
$\begin{gathered} P(\text { broken })= \\ 0.20 \end{gathered}$	32
	48 P(working and moving) $=0.48$

broken working

48	20
	30
2	

$\mathrm{P}($ working $)=0.80$
broken working

Bayesian Inference

- Inference = educated guessing
- Bayesian inference = guessing in the style of Bayes
- Example
- EdDiscussion: "My robot stopped moving, the hardware is broken, send me new parts"
- Marginal Probability
- P(moving)
$=P$ (broken and moving) +P (working and moving)
$=1 / 100+48 / 100=0.49$
- P (not moving)
$=19 / 100+32 / 100=0.51$
$\left.\begin{array}{ll}P(\text { broken }) \\ 0.20\end{array}\right)$
broken working
48
$P($ working $)=0.80$
working
$=0.19$
1

Bayesian Inference

- Inference = educated guessing
- Bayesian inference = guessing in the style of Bayes
- Example
- EdDiscussion: "My robot stopped moving, the hardware is broken, send me new parts"
- What is the probability that the robot is broken, given that it stopped moving?
- P(broken | not moving) = ???
- P(broken and not moving)
$=\mathrm{P}$ (not moving)*P(broken|not moving)
- $\mathrm{P}($ not moving and broken)
$=\mathrm{P}$ (broken)* P (not moving |broken)
- P (broken|not moving) $=P$ (broken)*P(not moving |broken) P (not moving)
- Before lab $8=0.2 * 0.96 / 0.51=0.38$
- After lab $8=0.5^{*} 0.96 / 0.68=0.71$
broken working

48	20
	30
2	

broken working

Bayesian Inference

- Bayesian inference = guessing in the style of Bayes

Probability Distribution

- Beliefs

Broken ro broken	t exampl working
48	20
	30
2	

Probability Distribution

- Beliefs

Probability Distribution

- Beliefs

0.167	0.167	0.167	0.167	0.167	0.167
	3	3	4	5	6
1	2	3			

Probability Distribution

- Beliefs

$3.4 e-9$	$0.9999 .:$
win	loose

Probability Distribution

- Beliefs
- Discrete -> continuous probability distribution
- Mean, median, most common value, etc.

Probability Distributions

- What is the maximum speed of your robot?
- Your speed is $8.8 \mathrm{ft} / \mathrm{s}, 6.6 \mathrm{ft} / \mathrm{s}, 8.33 \mathrm{ft} / \mathrm{s}$, but what is the actual value?
- Frequentist Statistics
- Mean: $\mu=(8.8+6.6+8.33) / 3=7.91 \mathrm{ft} / \mathrm{s}$
- Variance: $\sigma^{2}=\left((8.8-7.91)^{2}+(6.6-7.92)^{2}+(8.33-7.91)^{2}\right) /(3-1)=1.35 \mathrm{ft} / \mathrm{s}$
- Standard deviation: $\sigma=$ sqrt $\left(\sigma^{2}\right)=1.16 \mathrm{ft} / \mathrm{s}$
- \quad Standard error: $\sigma / \operatorname{sqrt}(3)=0.67 \mathrm{ft} / \mathrm{s}$
- Bayesian Statistics
- Probably 7.91ft/s...

Probability Distributions

- Use Bayes theorem
- Instead of events x and y

$$
P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}
$$

- Substitute "s" for the actual speed
- Substitute "m" for the measurements
- $P(s)$ is our prior
- $\quad P(\mathrm{~m} \mid \mathrm{s})$ is the likelihood associated with those measurements
- $\quad \mathrm{P}(\mathrm{s} \mid \mathrm{m})$ is what we believe about the speed given those measurements
- $\quad P(m)$ is the marginal likelihood
- Procedure:
- Start with a belief
- Update it
- End up with a new belief!

Probability Distributions

- Use Bayes theorem

$$
P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}
$$

- $\quad P(s)=$ uniform
- $\quad P(s \mid m)=P(m \mid s)^{*} c_{1} / c_{2}$
- Simplified: $P(s \mid m)=P(m \mid s)$
- Guess! What if the actual max speed is $11 \mathrm{ft} / \mathrm{s}$?
- $\quad \mathrm{P}(\mathrm{s}=11 \mid \mathrm{m}=[6.6,8.33,8.8])=\mathrm{P}(\mathrm{m}=[6.6,8.33,8.8] \mid \mathrm{s}=11)$
- $\quad P(m=6.6 \mid \mathrm{s}=11) * P(\mathrm{~m}=8.33 \mid \mathrm{s}=11) * P(\mathrm{~m}=8.8 \mid \mathrm{s}=11)$

Probability Distributions

- Use Bayes theorem

$$
P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}
$$

- $\quad P(s)=$ uniform
- $\quad P(s \mid m)=P(m \mid s)^{*} c_{1} / c_{2}$
- Simplified: $P(s \mid m)=P(m \mid s)$
- Guess! What if the actual max speed is $11 \mathrm{ft} / \mathrm{s}$?
- $\quad P(s=11 \mid m=[6.6,8.33,8.8])=P(m=[6.6,8.33,8.8] \mid \mathrm{s}=11)$
- $\quad P(m=6.6 \mid \mathrm{s}=11) * P(\mathrm{~m}=8.33 \mid \mathrm{s}=11) * P(\mathrm{~m}=8.8 \mid \mathrm{s}=11)$

No prior:
Maximum Likelihood Estimate (MLE)

Probability Distributions

- Use Bayes theorem
- Add a prior!

$$
P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}
$$

- You know yesterday's speed, and you can kind of judge the current speed by eye
- Prior: $7.91 \mathrm{ft} / \mathrm{s} \pm 1.16 \mathrm{ft} / \mathrm{s}$
- $\quad P(s=11 \mid m=[6.6,8.33,8.8])=P(m=[6.6,8.33,8.8] \mid s=11) * P(s=11)$

$$
=P(m=6.6 \mid s=11) * P(s=11) * P(m=8.33 \mid s=11) * P(s=11) * P(m=8.8 \mid s=11) * P(s=11)
$$

Repeat the process!

Open loop max speed [ft/s]

Open loop max speed [ft/s]

Probability Distributions

- Use Bayes theorem
- Add a prior!

$$
P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}
$$

- You know yesterday's speed, and you can kind of judge the current speed by eye
- Prior: $7.91 \mathrm{ft} / \mathrm{s} \pm 1.16 \mathrm{ft} / \mathrm{s}$
- $\quad P(s=11 \mid m=[6.6,8.33,8.8])=P(m=[6.6,8.33,8.8] \mid s=11) * P(s=11)$

$$
=P(m=6.6 \mid s=11) * P(s=11) * P(m=8.33 \mid s=11) * P(s=11) * P(m=8.8 \mid s=11) * P(s=11)
$$

Repeat the process!
Add everything up to get the posterior distribution

Bayesian Inference

$$
\qquad P(x \mid y)=\frac{P(y \mid x) P(x)}{P(y)}
$$ posterior

Probability Distributions

- Always believe the impossible, at least a little bit!
- Leave room for believing the unlikely. Leave a nonzero probability unless you are absolutely certain.
- "It ain't what you don't know that gets you into trouble. It's what you know for sure that just ain't so." -Mark Twain
- "Alice laughed "there's no use trying", she said: "one can't believe impossible things. "I daresay you haven't had much practice." said the Queen. "When I was younger, I always did it for half an hour a day. Why sometimes, I've believed as many as six impossible things before breakfast."

Alice's adventures in wonderland

Probabilistic Robotics

+ Explicitly represent the uncertainty using probability theory
+ Accommodate inaccurate models
+ Accommodate imperfect sensors
+ Robust in real-world applications
+ Best known approach to many hard robotics problems
- Computationally demanding
- Need to approximate

False assumptions

Is Robotics Going Statistics? The Field of Probabilistic Robotics

> Sebastian Thrun
> School of Computer Science
> Carnegie Mellon University
> http://www.cs.cmu.edu/ thrun
draft, please do not circulate

Abstract

References

- Probabilistic Robotics, book by Dieter Fox, Sebastian Thrun, and Wolfram Burgard
- How Bayes Theorem works (Youtube), by Brandon Rohrer

