
ECE 4160/5160
MAE 4910/5910

Fast Robots
Kalman Filter (recap)

1

Prof. Kirstin Hagelskjær Petersen
kirstin@cornell.edu

mailto:kirstin@cornell.edu

2

3

Kalman Filter

system

KFLQR

disturbance

noise

4

Kalman Filter (μ(t-1), Σ(t-1), u(t), z(t))

1. μp(t) = A μ(t-1) + B u(t)
2. Σp (t) = A Σ(t-1) AT + Σu

3. KKF = Σp(t) CT (C Σp(t) CT + Σz)-1

4. μ(t)= μp(t) + KKF (z(t) - C μp(t))
5. Σ(t) =(I – KKF C) Σp(t)
6. Return μ(t) and Σ(t)

update

prediction

Kalman Filter

Example process and measurement noise covariance matrices

Σ𝑢𝑢 = 𝜎𝜎12 0
0 𝜎𝜎22

, Σ𝑧𝑧 = 𝜎𝜎32

5

Example Lab 7

• Define A, B, C matrices
• Using system ID on a step response

ECE4960 Fast Robots

𝐹𝐹 = 𝑚𝑚𝑚𝑚 = 𝑚𝑚�̈�𝑥
𝐹𝐹 = 𝑢𝑢 − 𝑑𝑑�̇�𝑥
𝑢𝑢 − 𝑑𝑑�̇�𝑥 = 𝑚𝑚�̈�𝑥

�̈�𝑥 =
𝑢𝑢
𝑚𝑚
−
𝑑𝑑
𝑚𝑚
�̇�𝑥

What is d and m?
• At steady state (cst speed), we can find d

• 𝑑𝑑 = 𝑢𝑢
�̇�𝑥
≈ 0.0005

• We can use the rise time to find m
• 𝑚𝑚 = −𝑑𝑑𝑡𝑡0.9

ln(0.1)
≈ 4.1258 � 10−4

State space equation

�̇�𝑥
�̈�𝑥 =

0 1

0 −
𝑑𝑑
𝑚𝑚

𝑥𝑥
�̇�𝑥 +

0
1
𝑚𝑚

𝑢𝑢

𝐶𝐶 = −1 0

𝒙𝒙

𝒖𝒖 𝑥𝑥
�̇�𝑥

(Assume u=1 for now)

Example Lab 7

7

Example Lab 7

• Define A, B, C matrices
• Using system ID on a step response

• Sanity check
• Run virtual Kalman Filter on data from Lab 6 PID

• What is your initial state, and how confident in it are you?
• How much trust do you put in your model versus your sensor values?
• Experiment

• E.g. put less trust in the model
• E.g. put less trust in the sensors
• Start with a bad initial estimate

• Recall, our dynamic model is a bad estimate for the static robot

Linear Systems Control – “review of review”

8

• Linear system: �̇�𝑥 = 𝐴𝐴𝑥𝑥
• Solution: 𝑥𝑥 𝑡𝑡 = 𝑒𝑒𝐴𝐴𝑡𝑡𝑥𝑥 0
• Eigenvectors: 𝑇𝑇 = 𝜉𝜉1 𝜉𝜉2 … 𝜉𝜉𝑛𝑛

• Eigenvalues: D =

𝜆𝜆1 0
𝜆𝜆2

…
0 𝜆𝜆𝑛𝑛

• Linear transform: 𝐴𝐴𝑇𝑇 = 𝑇𝑇𝑇𝑇
• Solution: 𝑒𝑒𝐴𝐴𝑡𝑡 = 𝑇𝑇𝑒𝑒𝐷𝐷𝑡𝑡𝑇𝑇−1
• Mapping from x to z to x: 𝑥𝑥 𝑡𝑡 = 𝑇𝑇𝑒𝑒𝐷𝐷𝑡𝑡𝑇𝑇−1𝑥𝑥(0)
• Stability in continuous time: 𝜆𝜆 = 𝑚𝑚 + 𝑖𝑖𝑖𝑖, stable iff a<0

• Discrete time: 𝑥𝑥 𝑘𝑘 + 1 = �̃�𝐴𝑥𝑥(𝑘𝑘), �̃�𝐴 = 𝑒𝑒𝐴𝐴Δ𝑡𝑡

• Stability in discrete time: �̃�𝜆𝑛𝑛 = 𝑅𝑅𝑛𝑛𝑒𝑒𝑖𝑖𝑛𝑛𝑖𝑖, stable iff 𝑅𝑅<1

>>[T,D] = eig(A)

• Linearizing non-linear
systems

• Fixed points
• Jacobian

• Controllability
• �̇�𝑥 = 𝐴𝐴 − 𝐵𝐵𝐵𝐵 𝑥𝑥
• >>rank(ctrb(A,B))

• Reachability
• Controllability Gramian
• Pole placement

• >>K=place(A,B,p)
• Optimal control (LQR)

• >>K=lqr(A,B,Q,R)
• Observability

• >>rank(obsv(A,C))
• Optimal observer (KF)

• Sensor/model noise

9

• Configuration space and transformations
• Data types
• Sensors

• Distance Sensors
• Odometry and IMU
• Characterization

• Actuators/Motors
• Wiring/EMI
• Control

• State space models
• PID/LQR control
• Observers
• Deterministic -> Probabilistic Robots

• Bayes theorem

What we covered so far…

Next up….
Navigation and Planning

ECE 4160/5160
MAE 4910/5910

Fast Robots
Navigation and Planning

10

Prof. Kirstin Hagelskjær Petersen
kirstin@cornell.edu

Slides adapted from Vivek Thangavelu

mailto:kirstin@cornell.edu

• Problem: Find the path in the workspace from an initial
location to a goal location, while avoiding collisions

• How do you get to your goal?
• Can you see your goal?
• Do you have a map?
• Are obstacles unknown or dynamic?
• Does it matter how fast you get there?
• Does it matter how smooth the path is?
• How much compute power do you have?
• How precise and accurate is your motion control?
• What sensors do you have available?
• etc.

Navigation

• Problem: Find the path in the workspace from an initial
location to a goal location, while avoiding collisions

• Assumption: A good map for navigation exists

• Global navigation
• Given a map and a goal

location, find and execute a
trajectory that brings the
robot to the goal

• (Long term plan)

• Local navigation
• Given real-time sensor

readings, modulate the robot
trajectory to avoid collisions

• (Short term plan)

Navigation

Information
Extraction

Raw Sensor Data

PE
RC

EP
TI

O
N

Environmental
model

Localization

ES
TI

M
AT

IO
N

Path

Path Planning

PLAN
N

IN
G

Actuator
Commands

Path Execution M
O

TIO
N

CO

N
TRO

L

Global Map and State

WORLD

• Navigation breaks down to: Localization, Map Building, Path Planning
Navigation

14

• Local planners
• Global localization and planning

• Map representations
• Continuous
• Discrete
• Topological

• Maps as graphs
• Graph Search Algorithms

• Breadth First Search
• Depth First Search
• Dijkstras
• A*

Outline of the next module on Navigation

ECE 4160/5160
MAE 4910/5910

Local Planners

15

Prof. Kirstin Hagelskjær Petersen
kirstin@cornell.edu

mailto:kirstin@cornell.edu

16

• Use goal position, recent sensor readings, and relative position of robot to
goal

• Can be based on a local map
• Often implemented as a separate task
• Runs at a much faster rate than the global planning

• 3 examples:
• BUG Algorithms
• Vector Field Histogram (VFH)
• Dynamic Window Approach (DWA)

Local Path Planning / Obstacle Avoidance

Wagner, ITS 2015

17

• Uses local knowledge, and the direction and distance to the goal
• Basic idea

• Follow the contour of obstacles until you see the goal
• State 1: Seek goal
• State 2: follow wall

• Different variants: Bug0, Bug1, Bug2
• Advantages

• Super simple
• No global map
• Completeness

• Disadvantages
• Suboptimal

Bug Algorithms

Bug 0
Sensor Assumptions
• Direction to the goal
• Detect walls

Algorithm
1. Go towards goal
2. Follow obstacles until you can go

towards goal again
3. Loop

Howie Choset 16-735

Bug 0
Sensor Assumptions
• Direction to the goal
• Detect walls

Algorithm
1. Go towards goal
2. Follow obstacles until you can go

towards goal again
3. Loop

Howie Choset 16-735

Bug 0
Sensor Assumptions
• Direction to the goal
• Detect walls

Algorithm
1. Go towards goal
2. Follow obstacles until you can go

towards goal again
3. Loop

Howie Choset 16-735

Bug 1
Sensor Assumptions
• Direction to the goal
• Detect walls
• Odometry

Algorithm
1. Go towards goal
2. Follow obstacles and remember how close

you got to the goal
3. Return to the closest point, and loop

Howie Choset 16-735

Bug 1
Sensor Assumptions
• Direction to the goal
• Detect walls
• Odometry

Algorithm
1. Go towards goal
2. Follow obstacles and remember how close

you got to the goal
3. Return to the closest point, and loop

Howie Choset 16-735

Bug 1 - formally
Sensor Assumptions
• Direction to the goal
• Detect walls
• Odometry

• Lower bound traversal?
• d

• Upper bound traversal?
• d + 1.5 ∙ Sum(Pn)

• Pros?
• If a path exist, it returns in finite time
• It knows if none exist!

d
Pn

Howie Choset 16-735

Bug 2
Sensor Assumptions
• Direction to the goal
• Detect walls
• Odometry
• Original vector to the goal

Algorithm
1. Go towards goal on the vector
2. Follow obstacles until you are back on the

vector (and closer to the obstacle)
3. Loop

Howie Choset 16-735

Bug 2
Sensor Assumptions
• Direction to the goal
• Detect walls
• Odometry
• Original vector to the goal

Algorithm
1. Go towards goal on the vector
2. Follow obstacles until you are back on the

vector (and closer to the obstacle)
3. Loop

Howie Choset 16-735

Howie Choset 16-735Bug 2
Sensor Assumptions
• Direction to the goal
• Detect walls
• Odometry
• Original vector to the goal

Algorithm
1. Go towards goal on the vector
2. Follow obstacles until you are back on the

vector (and closer to the obstacle)
3. Loop

What is faster, right- or left wall
following?

27

Battle of the Bugs (1 vs 2)
https://www.youtube.com/watch?v=T2PVaKyxMmY

28

Battle of the Bugs (1 vs 2)

Exhaustive Search Greedy Search

https://www.youtube.com/watch?v=T2PVaKyxMmY

29

• Uses local knowledge, and the direction and distance to the goal
• Basic idea

• Follow the contour of obstacles until you see the goal
• State 1: Seek goal
• State 2: follow wall

• Different variants: Bug0, Bug1, Bug2

Bug Algorithms

• The robot motion behavior is reactive
• Issues if the instantaneous sensor

readings do not provide enough
information or are noisy

30

• VFH creates a local map of the environment around the
robot populated by “relatively” recent sensor readings

• Build a local 2D grid map → reduce to 1-DoF histogram
• Planning

• Find all openings large enough for robot to pass
• Choose the one with the lowest cost, G
• G = a*goal_direction + b*orientation + c*prev_direction

Vector Field Histograms
http://www.personal.umich.edu/
~johannb/Papers/paper16.pdf

31

• VFH creates a local map of the environment around the
robot populated by “relatively” recent sensor readings

• Build a local 2D grid map → reduce to 1-DoF histogram
• Planning

• Find all openings large enough for robot to pass
• Choose the one with the lowest cost, G
• G = a*goal_direction + b*orientation + c*prev_direction
• VFH+: Incorporate kinematics

• Limitations
• Does not avoid local minima
• Not guaranteed to reach goal

Vector Field Histograms
http://www.personal.umich.edu/
~johannb/Papers/paper16.pdf

32

• Search in the velocity space (robot moves in circular arcs)
• Takes into account robot acceleration capabilities and update rate

• A dynamic window, Vd, is the set of all tuples (vd, ωd) that can be reached
• Admissible velocities, Va, include those where the robot can stop before

collision
• The search space is then 𝑉𝑉𝑟𝑟 = 𝑉𝑉𝑠𝑠 ∩ 𝑉𝑉𝑎𝑎 ∩ 𝑉𝑉𝑑𝑑
• Cost function:

Dynamic Window Approach
http://www4.cs.umanitoba.ca/~jacky/Teaching/Courses/
74.795-LocalVision/ReadingList/fox97dynamic.pdf

33

• Bug Algorithms
• Inefficient, but can be exhaustive

• Vector Field Histograms
• Takes into account probabilistic sensor measurements

• Vector Field Histograms +
• Takes into account probabilistic sensor measurements and robot kinematics

• Dynamic Window Approach
• Takes into account robot dynamics

Local Planning Algorithms, Summary

ECE 4160/5160
MAE 4910/5910

Global Localization

34

Prof. Kirstin Hagelskjær Petersen
kirstin@cornell.edu

mailto:kirstin@cornell.edu

35

• Local planners
• Global localization and planning

• Map representations
• Continuous
• Discrete
• Topological

• Maps as graphs
• Graph Search Algorithms

• Breadth First Search
• Depth First Search
• Dijkstras
• A*

Outline of the next module on Navigation

Information
Extraction

Raw Sensor Data

PE
RC

EP
TI

O
N

Environmental
model

Localization

ES
TI

M
AT

IO
N

Path

Path Planning

PLAN
N

IN
G

Actuator
Commands

Path Execution M
O

TIO
N

CO

N
TRO

L

Global Map and State

WORLD

• Navigation breaks down to: Localization, Map Building, Path Planning
Navigation

Position Tracking

• Initial robot pose is known
• Either deterministically (odometry) or

through Bayesian statistic (motion and
sensor models)

• It is a “local” problem, as the
uncertainty is local (often small) and
confined to a region near the robot’s
true pose

Localization Problem

Global Localization

• Initial robot pose is unknown
• Need to estimate position from scratch
• A more difficult “global” problem,

where you cannot assume boundedness
in pose error kidnapped robot problem

38

• Local planners
• Global localization and planning

• Map representations
• Continuous
• Discrete
• Topological

• Maps as graphs
• Graph Search Algorithms

• Breadth First Search
• Depth First Search
• Dijkstras
• A*

Outline of the next module on Navigation

Information
Extraction

Raw Sensor Data

PE
RC

EP
TI

O
N

Environmental
model

Localization

ES
TI

M
AT

IO
N

Path

Path Planning

PLAN
N

IN
G

Actuator
Commands

Path Execution M
O

TIO
N

CO

N
TRO

L

Global Map and State

WORLD

• Navigation breaks down to: Localization, Map Building, Path Planning
Navigation

ECE 4160/5160
MAE 4910/5910

Map Representations

40

Prof. Kirstin Hagelskjær Petersen
kirstin@cornell.edu

mailto:kirstin@cornell.edu

(a) Building plan
(b) line-based map
(c) occupancy grid-based map
(d) topological map

Important properties
• Memory allocation
• Computation
• Robot pose

Map Representation
100 lines (2 parameters)

3000 grid cells (0.5x0.5m2) 50 features, 18 nodes

What if the robot is not a point?

• Each coordinate in the configuration space represents a robot degree of
freedom

• Global motion planning normally takes place in the configuration space

Configuration Space

A

B
β

α

Ex 1: Planar arm

• Each coordinate in the configuration space represents a robot degree of
freedom

• Global motion planning normally takes place in the configuration space

Configuration Space

Ex 2: Circular root in 2D world

Robot

Obstacles

• Each coordinate in the configuration space represents a robot degree of
freedom

• Global motion planning normally takes place in the configuration space

Configuration Space

Ex 2: Circular root in 2D world

Robot can be
treated as a point

object

• Each coordinate in the configuration space represents a robot degree of
freedom

• Global motion planning normally takes place in the configuration space

Configuration Space

Ex 2: Circular root in 2D world

Summary
• The precision of the map must appropriately match the precision with

which the robot needs to achieve its goals
• The precision of the map and the type of features represented must

match the precision and data types returned by the robot’s sensors
• The complexity of the map representation has direct impact on the

computational complexity of reasoning about mapping, localization,
and navigation

Map Representation Considerations

• Exact decomposition of the environment
• Used mainly in 2D representations
• Closed-world assumption
• Storage proportional to object density
• Example: Continuous line representations

• Using range finders, we can extract
lines/line segments in the environment

Continuous Representations

• Tessellate the world at a fixed resolution
• Approximate features given the resolution
• Most commonly used: Occupancy grid

Fixed Decomposition

Fixed Decomposition

• Adapt cell size to features

Adaptive Cell Decomposition

Lab 9-12: Combo of Linear Representation and Fixed Decomposition
Courtesy of Vivek Thangavelu

• Map is represented by lines
• Robot pose is represented by a

fixed decomposition of (x,y,theta)

Robots in 3D Environment

• How many coordinates are
needed now?
• 6 DOF

• Representation requirements
• Compact in memory
• Efficient access and queries
• Enables sensor fusion

• Solution
• Topological Representation

• A topological representation is a graph
that specifies nodes and edges

• Nodes denote areas in the environment
• Edges describe environment connectivity

• Robots can…
• ...detect their current position in terms of

the nodes of the topological graph
• …travel between nodes using robot

motion

Topological Decomposition

55

• Local planners
• Global localization and planning

• Map representations
• Continuous
• Discrete
• Topological

• Maps as graphs
• Graph Search Algorithms

• Breadth First Search
• Depth First Search
• Dijkstras
• A*

Outline of the next module on Navigation

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Example Lab 7
	Slide Number 6
	Example Lab 7
	Slide Number 8
	What we covered so far…
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Outline of the next module on Navigation
	Slide Number 15
	Local Path Planning / Obstacle Avoidance
	Bug Algorithms
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Bug Algorithms
	Vector Field Histograms
	Vector Field Histograms
	Dynamic Window Approach
	Local Planning Algorithms, Summary
	Slide Number 34
	Outline of the next module on Navigation
	Slide Number 36
	Localization Problem
	Outline of the next module on Navigation
	Slide Number 39
	Slide Number 40
	Map Representation
	What if the robot is not a point?
	Configuration Space
	Configuration Space
	Configuration Space
	Configuration Space
	Map Representation Considerations
	Continuous Representations
	Fixed Decomposition
	Fixed Decomposition
	Adaptive Cell Decomposition
	Lab 9-12: Combo of Linear Representation and Fixed Decomposition
	Robots in 3D Environment
	Topological Decomposition
	Outline of the next module on Navigation

