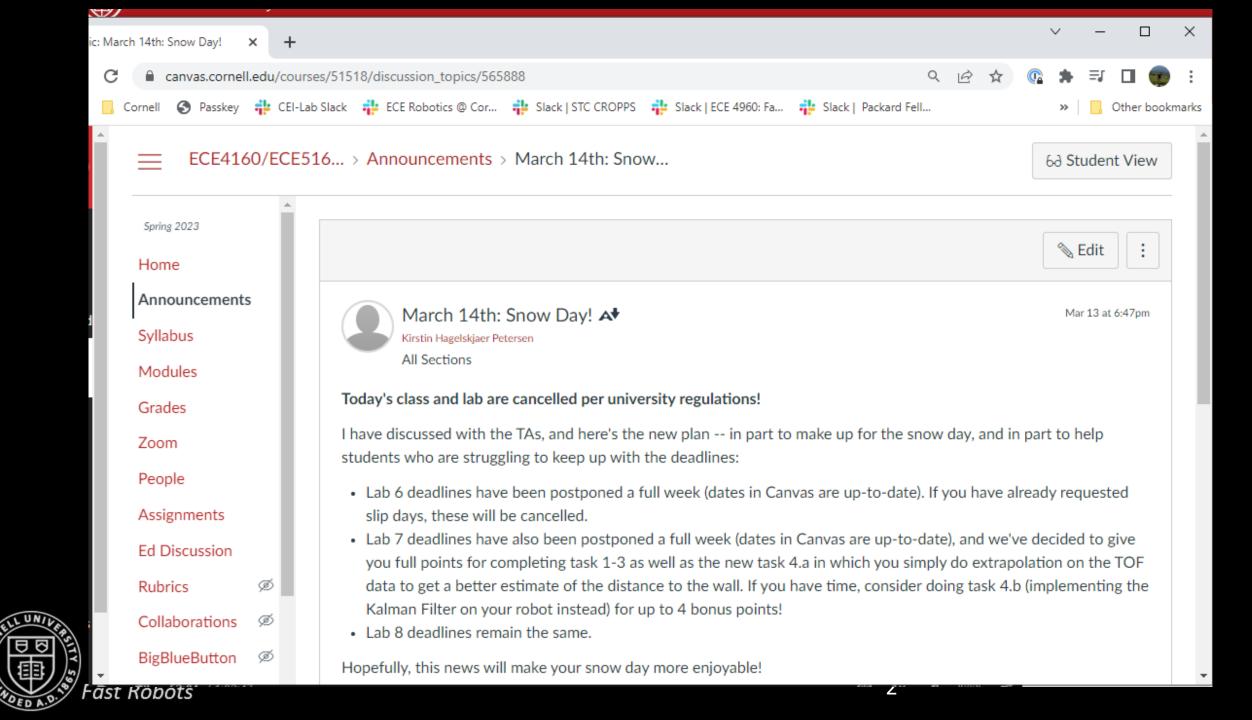
Prof. Kirstin Hagelskjær Petersen

1

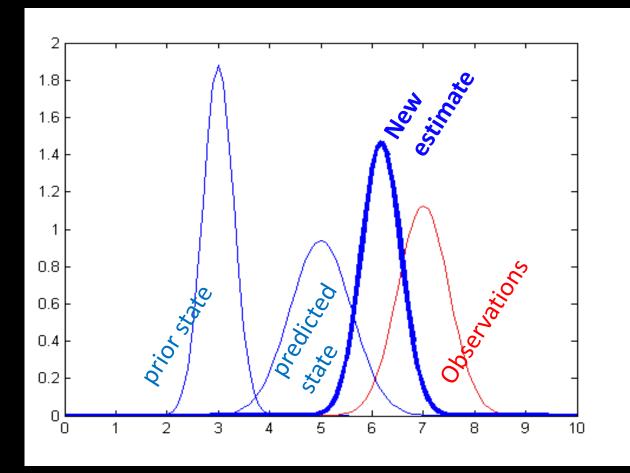
kirstin@cornell.edu

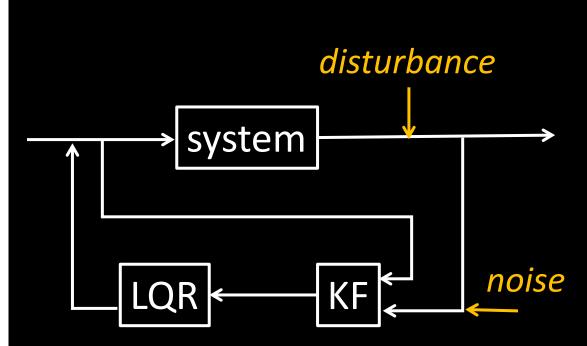
ECE 4160/5160 MAE 4910/5910

Fast Robots Kalman Filter (recap)

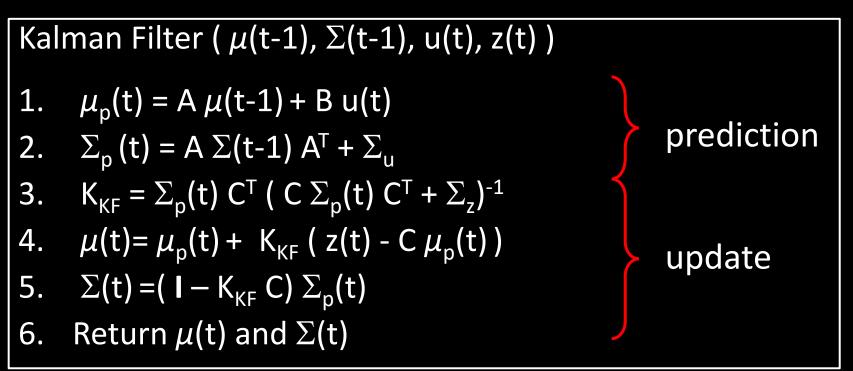


Kalman Filter





Kalman Filter



Example process and measurement noise covariance matrices

$$\Sigma_{u} = \begin{bmatrix} \sigma_{1}^{2} & 0 \\ 0 & \sigma_{2}^{2} \end{bmatrix}, \Sigma_{z} = \sigma_{3}^{2}$$

Example Lab 7

- Define A, B, C matrices
 - Using system ID on a step response

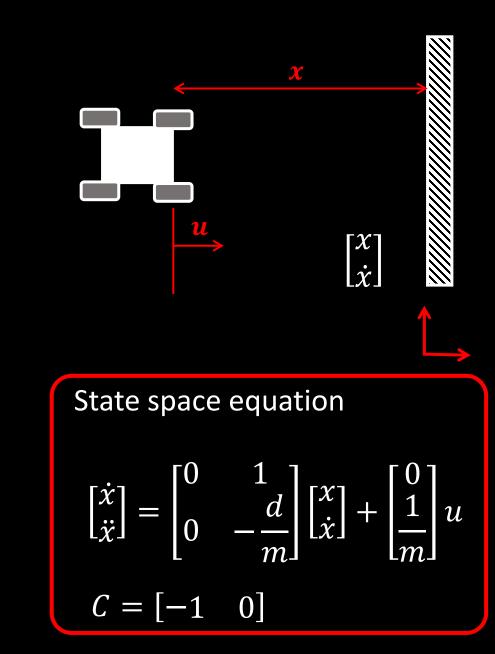
Example Lab 7

 $F = ma = m\ddot{x}$ $F = u - d\dot{x}$ $u - d\dot{x} = m\ddot{x}$ $\ddot{x} = \frac{u}{m} - \frac{d}{m}\dot{x}$

What is d and m?

- At steady state (cst speed), we can find *d*
 - $d = \frac{u}{\dot{x}} \approx 0.0005$ (Assume u=1 for now)
- We can use the rise time to find *m*

•
$$m = \frac{-dt_{0.9}}{\ln(0.1)} \approx 4.1258 \cdot 10^{-4}$$



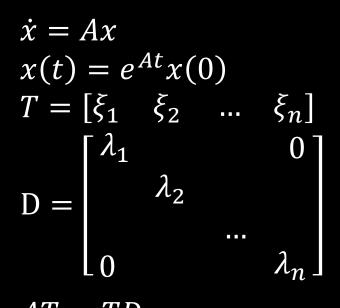
Example Lab 7

- Define A, B, C matrices
 - Using system ID on a step response
- Sanity check
 - Run virtual Kalman Filter on data from Lab 6 PID
 - What is your initial state, and how confident in it are you?
 - How much trust do you put in your model versus your sensor values?
 - Experiment
 - E.g. put less trust in the model
 - E.g. put less trust in the sensors
 - Start with a bad initial estimate
 - Recall, our dynamic model is a bad estimate for the static robot

Linear Systems Control – "review of review"

- Linear system:
- Solution:
- Eigenvectors:
- Eigenvalues:
 >>[T,D] = eig(A)
- Linear transform:
- Solution:
- Mapping from x to z to x:
- Stability in continuous time:
 - Discrete time:

Fast Robots



$$AT = TD$$

$$e^{At} = Te^{Dt}T^{-1}$$

$$x(t) = Te^{Dt}T^{-1}x(0)$$

$$\lambda = a + ib$$
, stable iff a<0

$$\kappa(k+1) = \tilde{A}x(k), \tilde{A} = e^{A\Delta t}$$

• Stability in discrete time: $\tilde{\lambda}^n = R^n e^{in\theta}$, stable iff R < 1

- Linearizing non-linear systems
 - Fixed points
 - Jacobian
- Controllability
 - $\dot{x} = (A BK)x$
 - >>rank(ctrb(A,B))
- Reachability
- Controllability Gramian
- Pole placement
 - >>K=place(A,B,p)
- Optimal control (LQR)
 - >>K=lqr(A,B,Q,R)
- Observability
 - >>rank(obsv(A,C))
- Optimal observer (KF)
 - Sensor/model noise

What we covered so far...

- Configuration space and transformations
- Data types
- Sensors
 - Distance Sensors
 - Odometry and IMU
 - Characterization
- Actuators/Motors
- Wiring/EMI
- Control
 - State space models
 - PID/LQR control
 - Observers
 - Deterministic -> Probabilistic Robots
 - Bayes theorem

Next up.... Navigation and Planning

9

Prof. Kirstin Hagelskjær Petersen

kirstin@cornell.edu

ECE 4160/5160 MAE 4910/5910

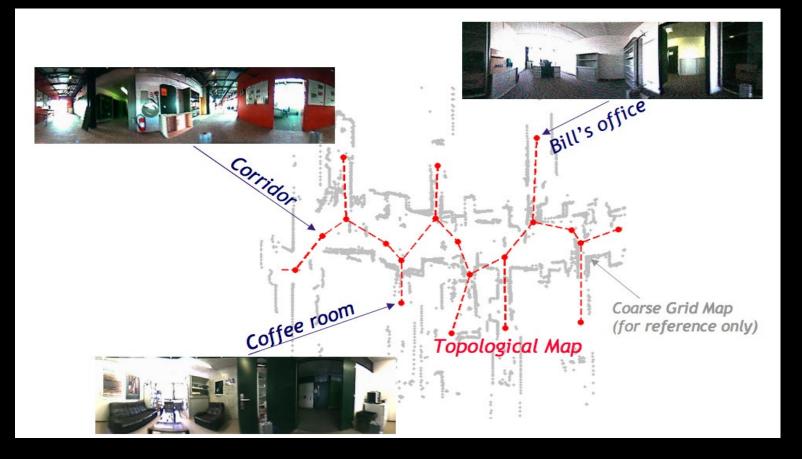
Fast Robots Navigation and Planning

Slides adapted from Vivek Thangavelu

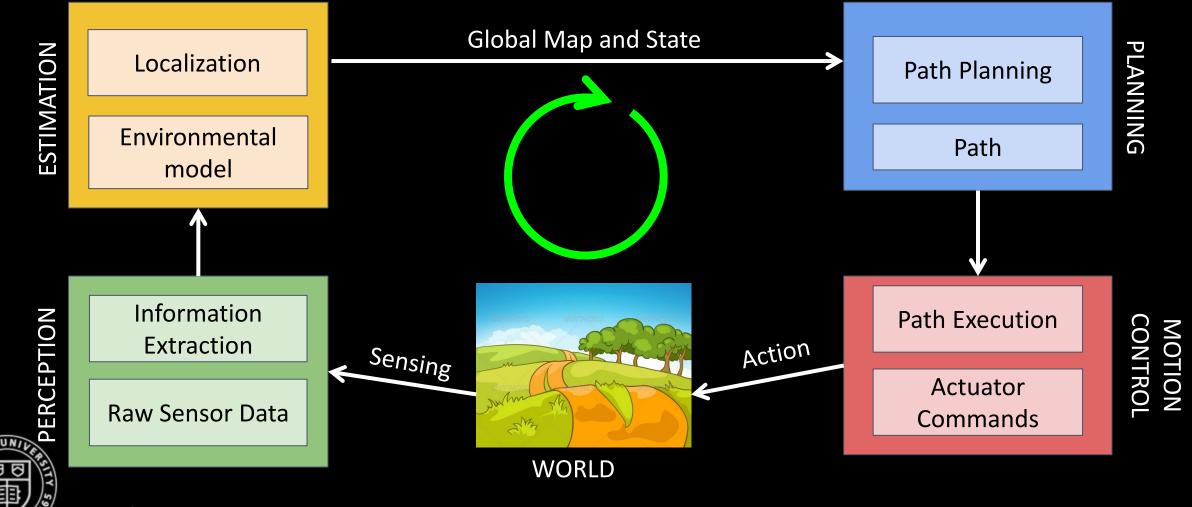
- **Problem:** Find the path in the workspace from an initial location to a goal location, while avoiding collisions
- How do you get to your goal?
 - Can you see your goal?
 - Do you have a map?
 - Are obstacles unknown or dynamic?
 - Does it matter how fast you get there?
 - Does it matter how smooth the path is?
 - How much compute power do you have?
 - How precise and accurate is your motion control?
 - What sensors do you have available?

- **Problem:** Find the path in the workspace from an initial location to a goal location, while avoiding collisions
- Assumption: A good map for navigation exists
 - Global navigation
 - Given a map and a goal location, find and execute a trajectory that brings the robot to the goal
 - (Long term plan)
 - Local navigation
 - Given real-time sensor readings, modulate the robot trajectory to avoid collisions
 (Short term plan)

 Fast Robots



• Navigation breaks down to: Localization, Map Building, Path Planning



🔊 Fast Robots

Outline of the next module on Navigation

Local planners

- Global localization and planning
 - Map representations
 - Continuous
 - Discrete
 - Topological
 - Maps as graphs
 - Graph Search Algorithms
 - Breadth First Search
 - Depth First Search
 - Dijkstras
 - A*

14	

Prof. Kirstin Hagelskjær Petersen

kirstin@cornell.edu

ECE 4160/5160 MAE 4910/5910

Local Planners

Local Path Planning / Obstacle Avoidance

- Use goal position, recent sensor readings, and relative position of robot to goal
 - Can be based on a local map
 - Often implemented as a separate task
 - Runs at a much faster rate than the global planning
- 3 examples:
 - BUG Algorithms
 - Vector Field Histogram (VFH)
 - Dynamic Window Approach (DWA)

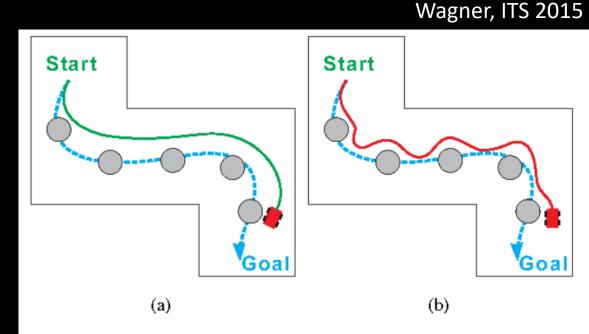
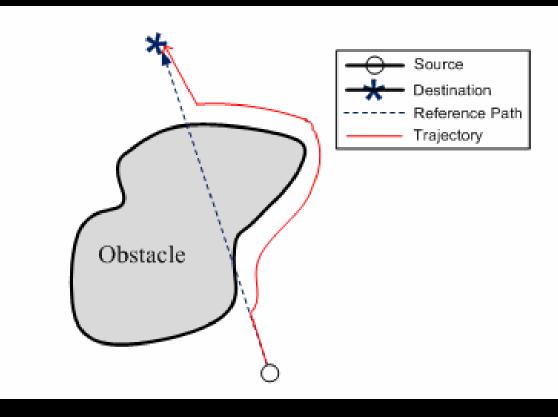


Fig. 1. Dashed blue spline is global path: a) Green spline is ideal local path; b) Red spline is actual local path

Bug Algorithms

- Uses local knowledge, and the direction and distance to the goal
- Basic idea
 - Follow the contour of obstacles until you see the goal
 - State 1: Seek goal
 - State 2: follow wall
- Different variants: Bug0, Bug1, Bug2
- Advantages
 - Super simple
 - No global map
 - Completeness
- Disadvantages



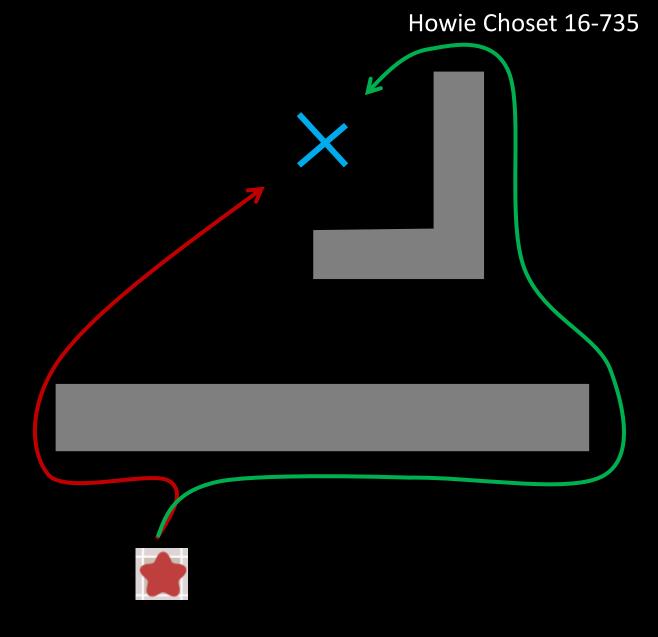
Bug O

Sensor Assumptions

- Direction to the goal
- Detect walls

Algorithm

- 1. Go towards goal
- 2. Follow obstacles until you can go towards goal again
- 3. Loop

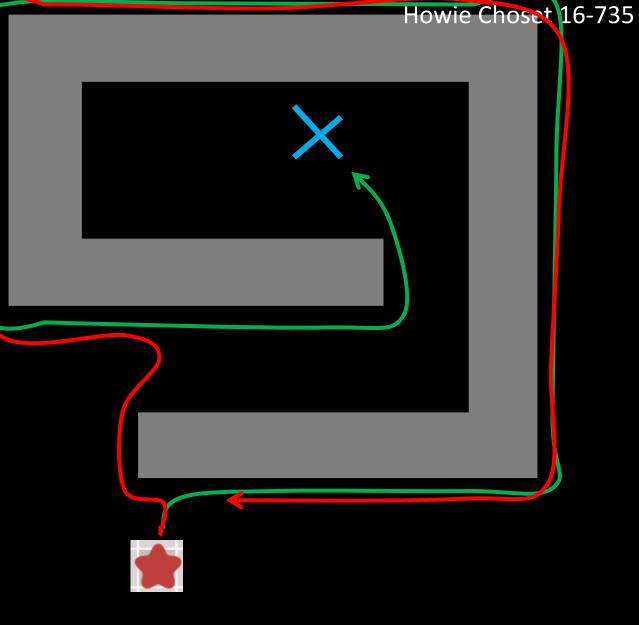


Sensor Assumptions

- Direction to the goal
- Detect walls

Algorithm

- 1. Go towards goal
- 2. Follow obstacles until you can go towards goal again
- 3. Loop

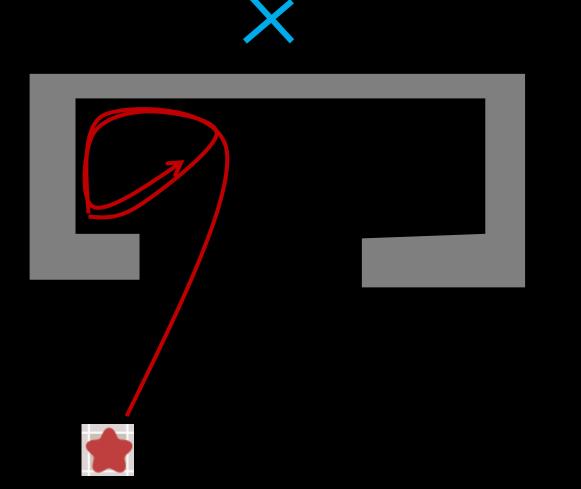


Sensor Assumptions

- Direction to the goal
- Detect walls

Algorithm

- 1. Go towards goal
- 2. Follow obstacles until you can go towards goal again
- 3. Loop



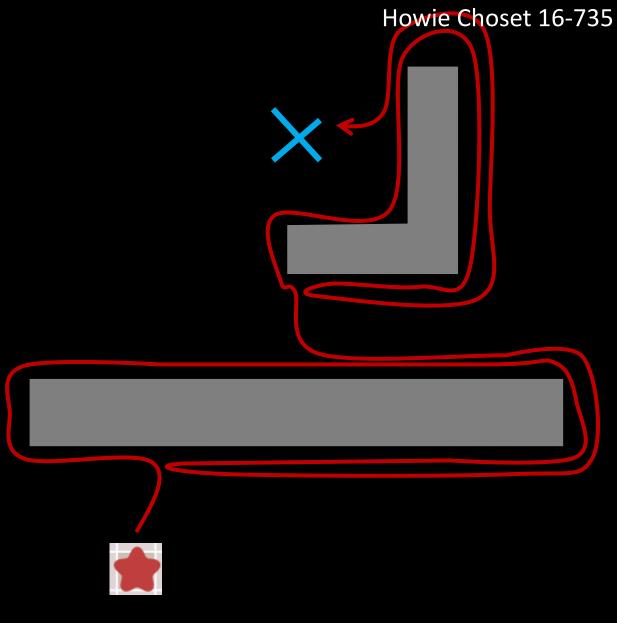
Howie Choset 16-735

Sensor Assumptions

- Direction to the goal
- Detect walls
- Odometry

Algorithm

- 1. Go towards goal
- 2. Follow obstacles and remember how close you got to the goal
- 3. Return to the closest point, and loop

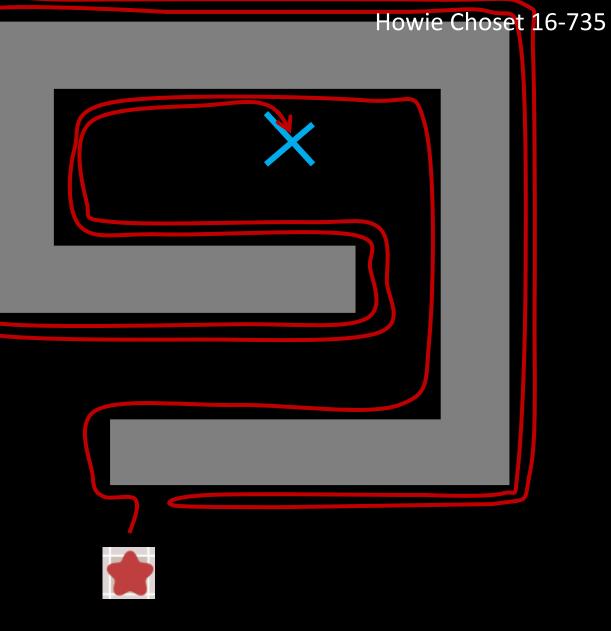


Sensor Assumptions

- Direction to the goal
- Detect walls
- Odometry

Algorithm

- 1. Go towards goal
- 2. Follow obstacles and remember how close you got to the goal
- 3. Return to the closest point, and loop



Bug 1 - formally

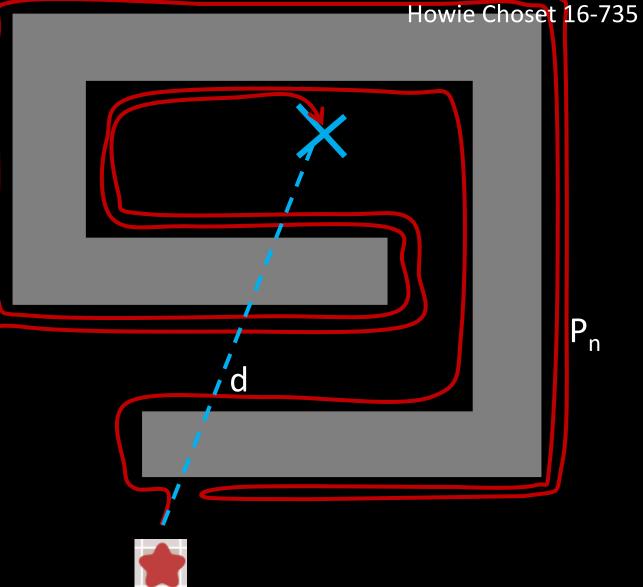
Sensor Assumptions

- Direction to the goal
- Detect walls
- Odometry

- Lower bound traversal?
 - d
- Upper bound traversal?
 - $d + 1.5 \cdot Sum(P_n)$
- Pros?

 \bullet

- If a path exist, it returns in finite time
 - It knows if none exist!

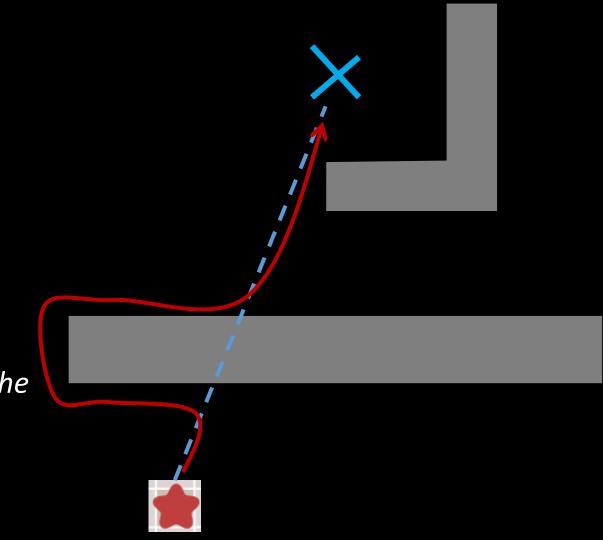


Sensor Assumptions

- Direction to the goal
- Detect walls
- Odometry
- Original vector to the goal

Algorithm

- 1. Go towards goal on the vector
- 2. Follow obstacles *until you are back on the vector (and closer to the obstacle)*
- 3. Loop



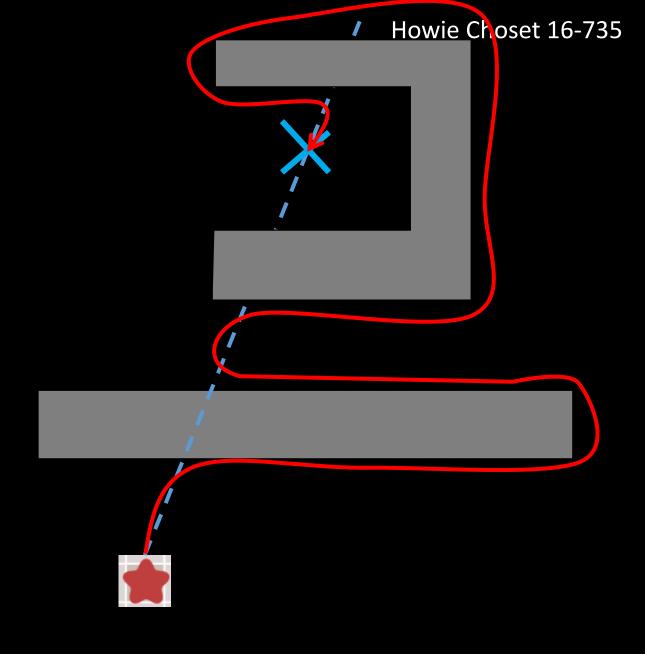
Howie Choset 16-735

Sensor Assumptions

- Direction to the goal
- Detect walls
- Odometry
- Original vector to the goal

Algorithm

- 1. Go towards goal on the vector
- 2. Follow obstacles *until you are back on the vector (and closer to the obstacle)*
- 3. Loop



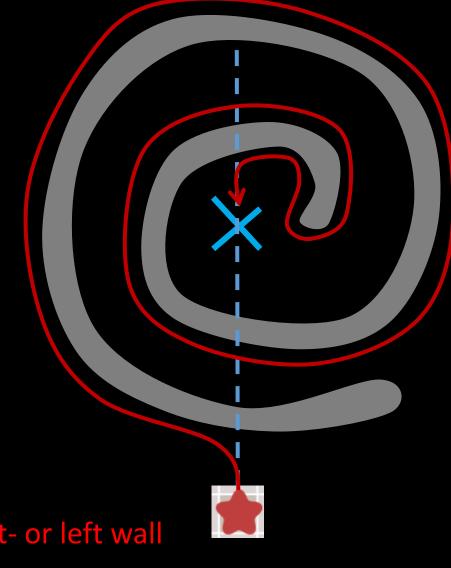
Sensor Assumptions

- Direction to the goal
- Detect walls
- Odometry
- Original vector to the goal

Algorithm

- 1. Go towards goal on the vector
- 2. Follow obstacles *until you are back on the vector (and closer to the obstacle)*
- 3. Loop

What is faster, right- or left wall following?



Howie Choset 16-735

Battle of the Bugs (1 vs 2)

https://www.youtube.com/watch?v=T2PVaKyxMmY

Bug 1 Layout 1

Bug 2 Layout 1

Battle of the Bugs (1 vs 2)

Exhaustive Search

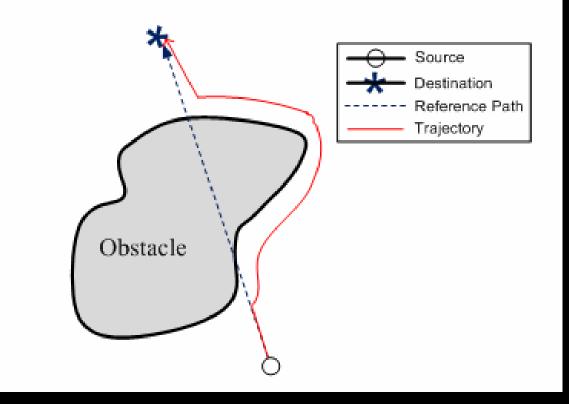
Greedy Search

Bug 1 Layout 2

Bug 2 Layout 2

Bug Algorithms

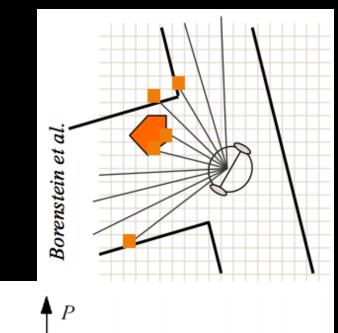
- Uses local knowledge, and the direction and distance to the goal
- Basic idea
 - Follow the contour of obstacles until you see the goal
 - State 1: Seek goal
 - State 2: follow wall
- Different variants: Bug0, Bug1, Bug2
- The robot motion behavior is reactive
- Issues if the instantaneous sensor readings do not provide enough information or are noisy

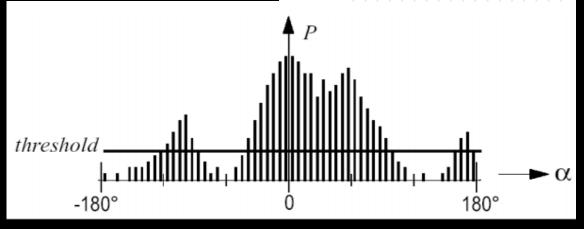


Vector Field Histograms

- VFH creates a local map of the environment around the robot populated by "relatively" recent sensor readings
- Build a local 2D grid map \rightarrow reduce to 1-DoF histogram
- Planning
 - Find all openings large enough for robot to pass
 - Choose the one with the lowest cost, G
 - G = a*goal_direction + b*orientation + c*prev_direction

http://www.personal.umich.edu/ ~johannb/Papers/paper16.pdf



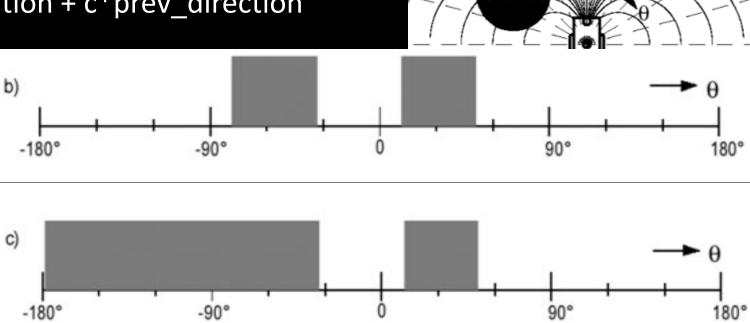


Vector Field Histograms

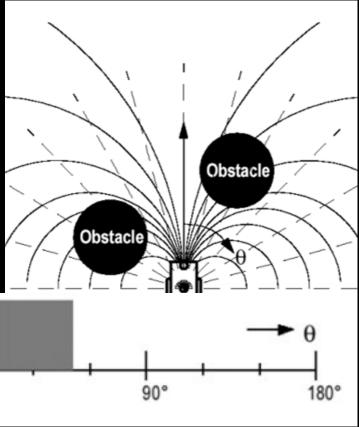
- VFH creates a local map of the environment around the robot populated by "relatively" recent sensor readings
- Build a local 2D grid map \rightarrow reduce to 1-DoF histogram
- Planning
 - Find all openings large enough for robot to pass
 - Choose the one with the lowest cost, G
 - G = a*goal_direction + b*orientation + c*prev_direction
 - VFH+: Incorporate kinematics
- Limitations

Fast Robots

- Does not avoid local minima
- Not guaranteed to reach goal



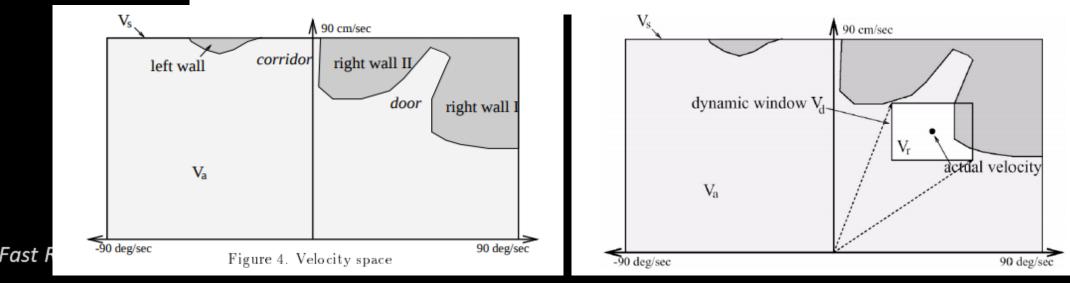
http://www.personal.umich.edu/ ~johannb/Papers/paper16.pdf



Dynamic Window Approach

http://www4.cs.umanitoba.ca/~jacky/Teaching/Courses/ 74.795-LocalVision/ReadingList/fox97dynamic.pdf

- Search in the velocity space (robot moves in circular arcs)
 - Takes into account robot acceleration capabilities and update rate
- A dynamic window, V_d , is the set of all tuples (v_d , ω_d) that can be reached
- Admissible velocities, V_a, include those where the robot can stop before collision
- The search space is then $V_r = V_s \cap V_a \cap V_d$
- Cost function:
- $G(v,\omega) = \sigma(\alpha \cdot heading(v,\omega) + \beta \cdot dist(v,\omega) + \gamma \cdot velocity(v,\omega))$



Local Planning Algorithms, Summary

- Bug Algorithms
 - Inefficient, but can be exhaustive
- Vector Field Histograms
 - Takes into account probabilistic sensor measurements
- Vector Field Histograms +
 - Takes into account probabilistic sensor measurements and robot kinematics
- Dynamic Window Approach
 - Takes into account robot dynamics

Prof. Kirstin Hagelskjær Petersen

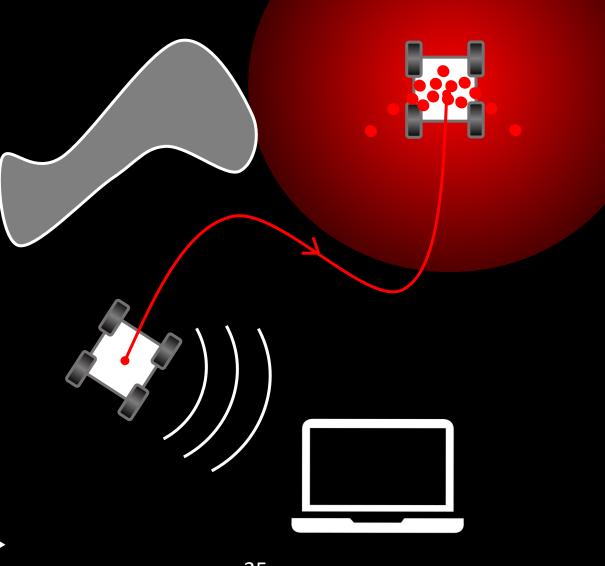
kirstin@cornell.edu

ECE 4160/5160 MAE 4910/5910

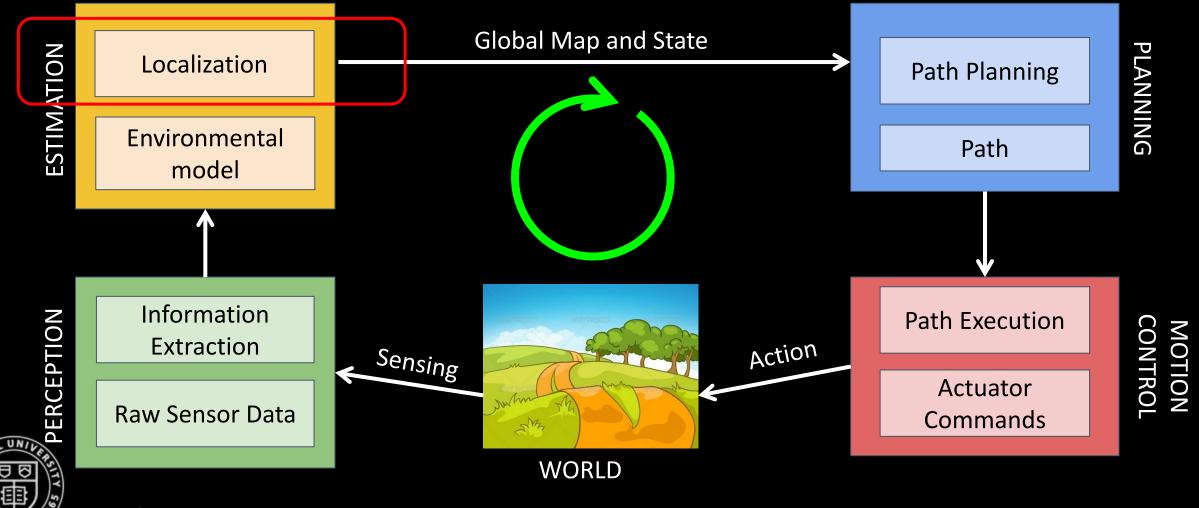
Global Localization

Outline of the next module on Navigation

- Local planners
- Global localization and planning
 - Map representations
 - Continuous
 - Discrete
 - Topological
 - Maps as graphs
 - Graph Search Algorithms
 - Breadth First Search
 - Depth First Search
 - Dijkstras
 - A*



• Navigation breaks down to: Localization, Map Building, Path Planning



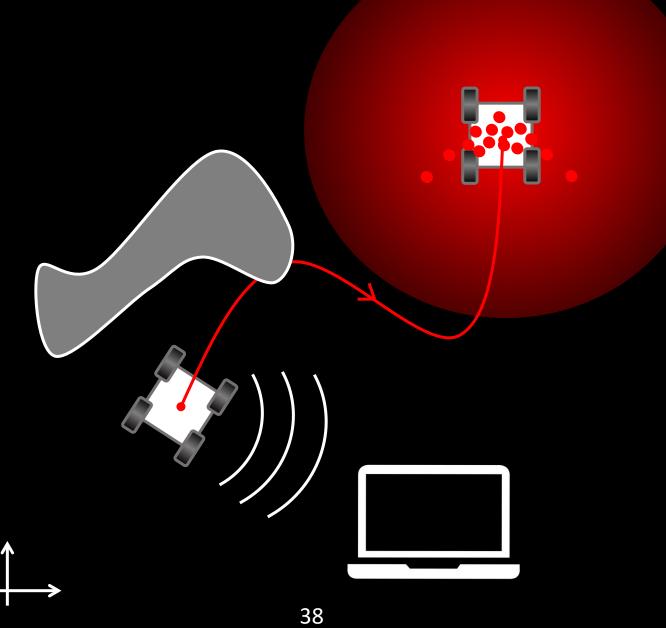
🔊 Fast Robots

Localization Problem

Position Tracking	Global Localization
 Initial robot pose is known Either deterministically (odometry) or through Bayesian statistic (motion and sensor models) It is a "local" problem, as the uncertainty is local (often small) and confined to a region near the robot's true pose 	 Initial robot pose is unknown Need to estimate position from scratch A more difficult "global" problem, where you cannot assume boundedness in pose error kidnapped robot problem

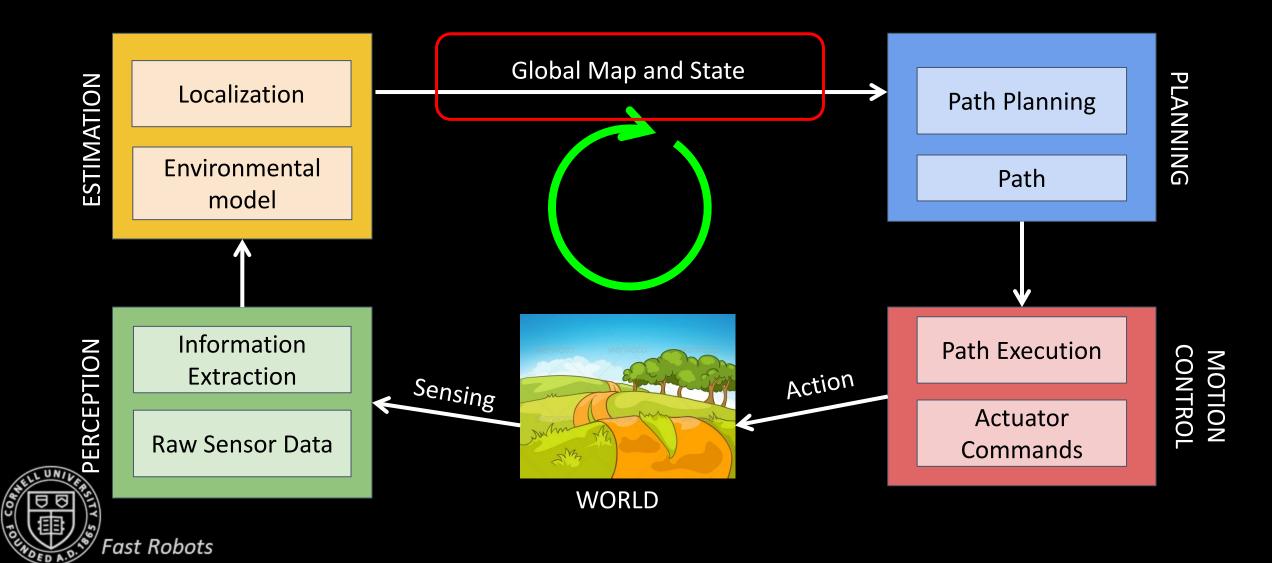
Outline of the next module on Navigation

- Local planners
- Global localization and planning
 - Map representations
 - Continuous
 - Discrete
 - Topological
 - Maps as graphs
 - Graph Search Algorithms
 - Breadth First Search
 - Depth First Search
 - Dijkstras
 - A*



Navigation

• Navigation breaks down to: Localization, Map Building, Path Planning



Prof. Kirstin Hagelskjær Petersen

kirstin@cornell.edu

ECE 4160/5160 MAE 4910/5910

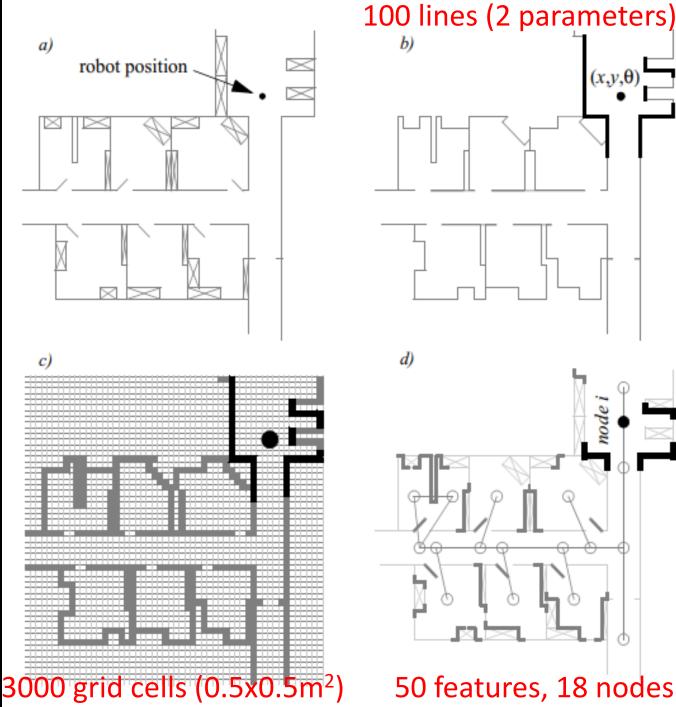
Map Representations

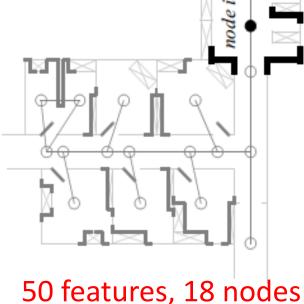
Map Representation

- (a) Building plan
- (b) line-based map
- (c) occupancy grid-based map
- (d) topological map

Important properties

- Memory allocation
- Computation
- Robot pose

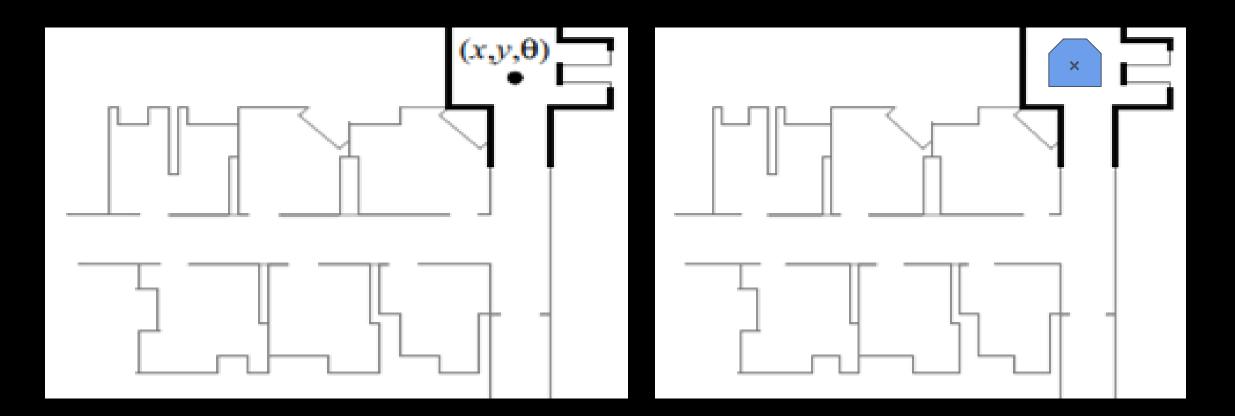




d)

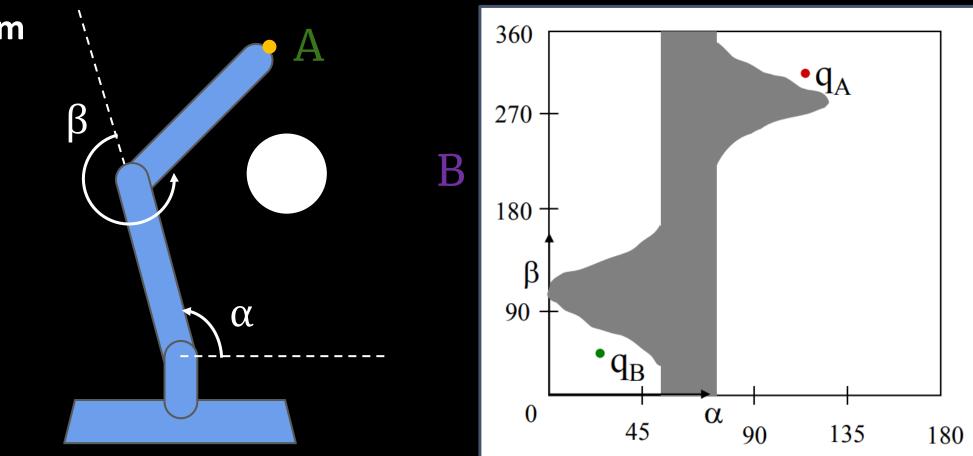
 (x,y,θ)

What if the robot is not a point?

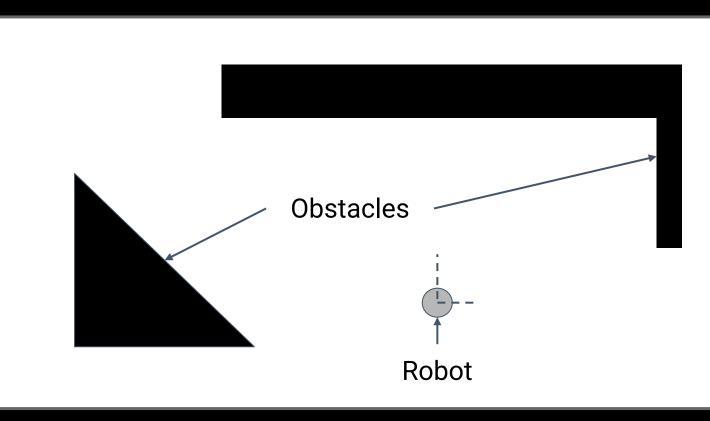


- Each coordinate in the configuration space represents a robot degree of freedom
 - Global motion planning normally takes place in the configuration space

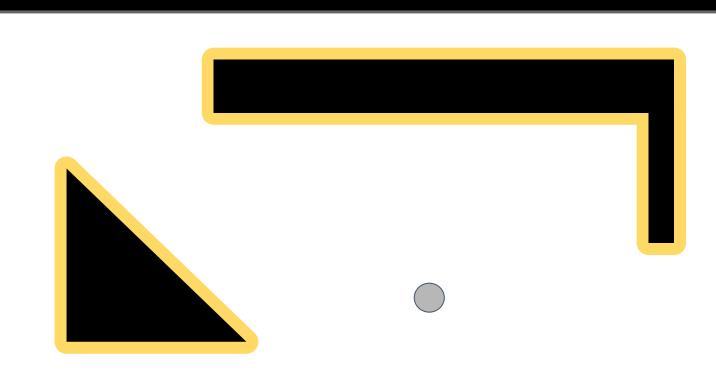
Ex 1: Planar arm



- Each coordinate in the configuration space represents a robot degree of freedom
 - Global motion planning normally takes place in the configuration space
 - Ex 2: Circular root in 2D world



- Each coordinate in the configuration space represents a robot degree of freedom
 - Global motion planning normally takes place in the configuration space
 - Ex 2: Circular root in 2D world



- Each coordinate in the configuration space represents a robot degree of freedom
 - Global motion planning normally takes place in the configuration space
 - Ex 2: Circular root in 2D world

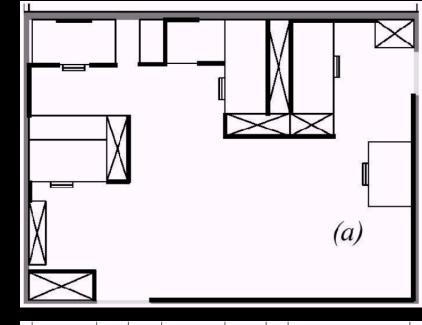
Map Representation Considerations

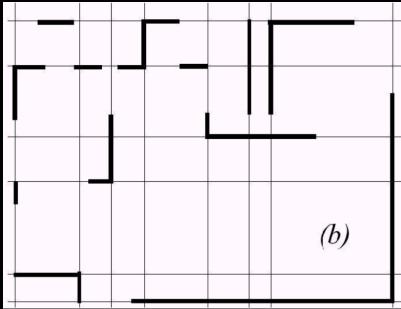
Summary

- The precision of the map must appropriately match the precision with which the robot needs to achieve its goals
- The precision of the map and the type of features represented must match the precision and data types returned by the robot's sensors
- The complexity of the map representation has direct impact on the computational complexity of reasoning about mapping, localization, and navigation

Continuous Representations

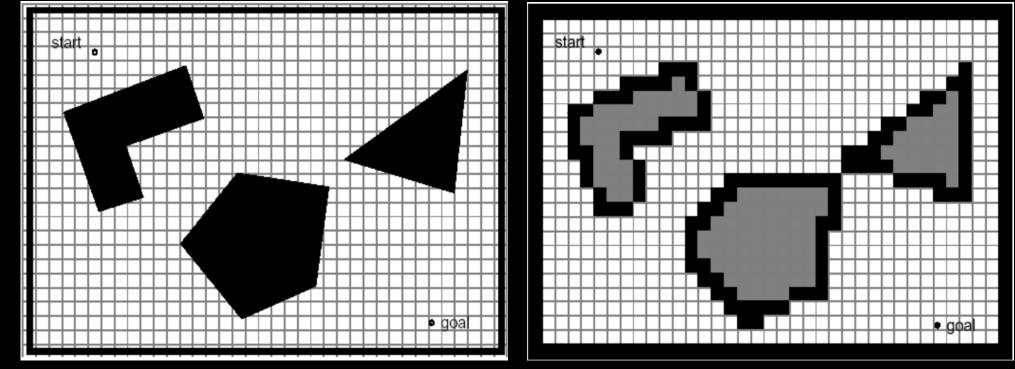
- Exact decomposition of the environment
- Used mainly in 2D representations
- Closed-world assumption
- Storage proportional to object density
- Example: Continuous line representations
 - Using range finders, we can extract lines/line segments in the environment



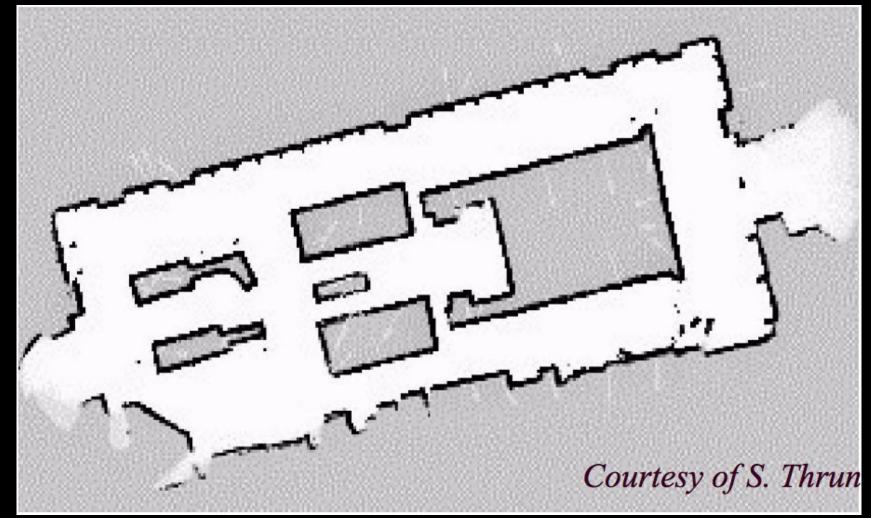


Fixed Decomposition

- Tessellate the world at a fixed resolution
- Approximate features given the resolution
- Most commonly used: Occupancy grid

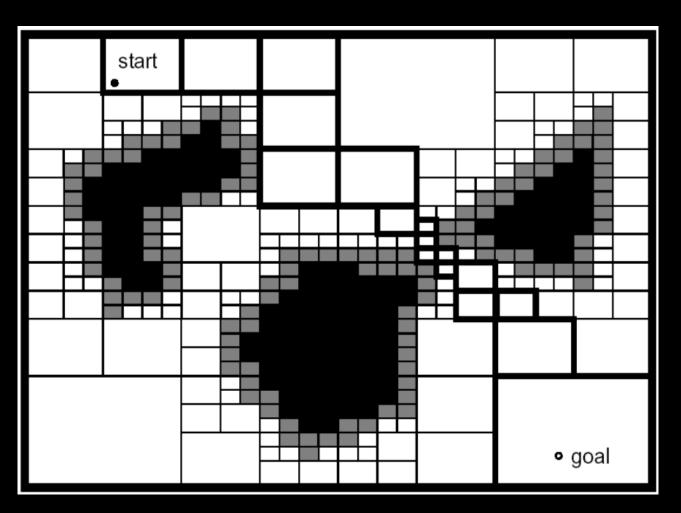


Fixed Decomposition



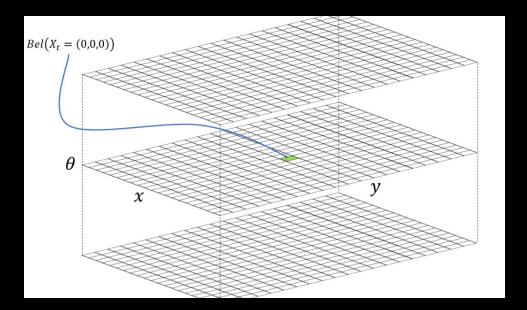
Adaptive Cell Decomposition

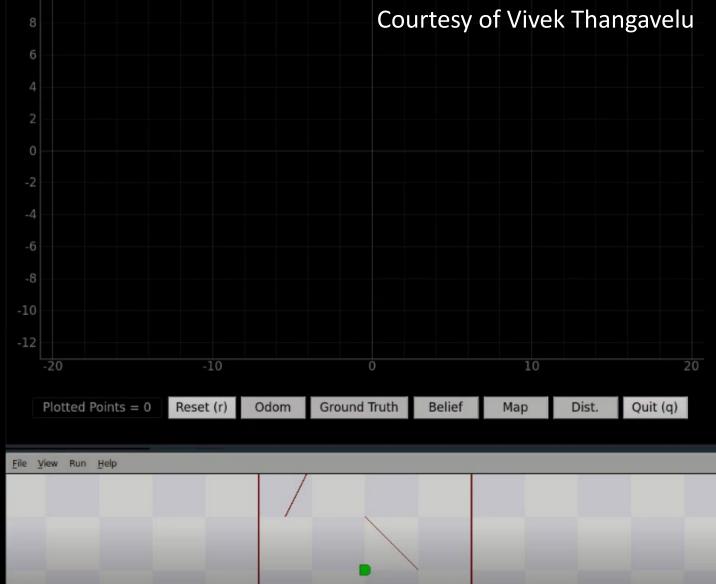
• Adapt cell size to features



Lab 9-12: Combo of Linear Representation and Fixed Decomposition

- Map is represented by lines
- Robot pose is represented by a fixed decomposition of (x,y,theta)



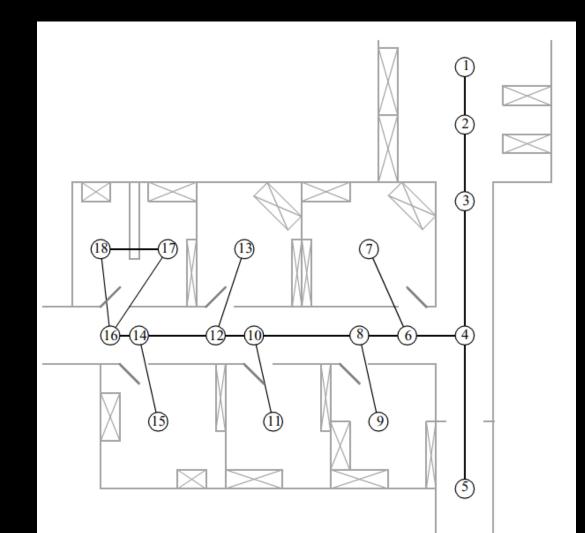


Robots in 3D Environment

- How many coordinates are needed now?
 - 6 DOF
- Representation requirements
 - Compact in memory
 - Efficient access and queries
 - Enables sensor fusion
- Solution
 - Topological Representation

Topological Decomposition

- A topological representation is a graph that specifies nodes and edges
 - Nodes denote areas in the environment
 - Edges describe environment connectivity
- Robots can...
 - ...detect their current position in terms of the nodes of the topological graph
 - …travel between nodes using robot motion



Outline of the next module on Navigation

- Local planners
- Global localization and planning
 - Map representations
 - Continuous
 - Discrete
 - Topological
 - Maps as graphs
 - Graph Search Algorithms
 - Breadth First Search
 - Depth First Search
 - Dijkstras
 - A*

