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• Local planners
• Global localization and planning

• Map representations
• Continuous
• Discrete 
• Topological

• Maps as graphs
• Graph Search Algorithms

• Breadth First Search
• Depth First Search
• Dijkstras
• A*

• Localization, Sensor and motion 
models, SLAM

Outline of the next module on Navigation
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• Navigation breaks down to: Localization, Map Building, Path Planning
Navigation



(a) Building plan
(b) line-based map
(c) occupancy grid-based map
(d) topological map

Important properties
• Memory allocation
• Computation

Map Representation
100 lines (2 parameters)

3000 grid cells (0.5x0.5m2) 18 nodes



• Exact decomposition of the environment
• Used mainly in 2D representations
• Closed-world assumption
• Storage proportional to object density
• Example: Continuous line representations

• Using range finders, we can extract 
lines/line segments in the environment

Continuous Representations



• Tessellate the world at a fixed resolution
• Approximate features given the resolution
• Most commonly used: Occupancy grid

Fixed Decomposition



Fixed Decomposition



• Adapt cell size to features

Adaptive Cell Decomposition



• A topological representation is a graph 
that specifies nodes and edges

• Nodes denote areas in the environment
• Edges describe environment connectivity

• Robots can…
• ...detect their current position in terms of 

the nodes of the topological graph
• …travel between nodes using robot 

motion

Topological Decomposition



• A topological representation is a graph 
that specifies nodes and edges

• Nodes denote areas in the environment
• Edges describe environment connectivity

• Robots can…
• ...detect their current position in terms of 

the nodes of the topological graph
• …travel between nodes using robot 

motion

• Typical for 3D maps

Topological Decomposition



How to represent the robot pose?

• Physical robots take up space
• Expand obstacles
• Represent maps in configuration space 

instead of Euclidean space Robot

Obstacles

Robot can be 
treated as a 
point object



• The precision of the map must appropriately match the precision with 
which the robot needs to achieve its goals

• The precision of the map and the type of features represented must 
match the precision and data types returned by the robot’s sensors

• The complexity of the map representation has direct impact on the 
computational complexity of reasoning about mapping, localization, 
and navigation

Map Representation Considerations
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Real world Configuration 
Space

Map 
Representation

Graph 
Construction

Graph 
Search

Common alternatives
• Optimal control
• Potential fields

Modelling path planning as a graph search problem 



Real world Configuration 
Space

Map 
Representation

Graph 
Construction

Graph 
Search

• Topological Graphs 
• Cell decomposition
• Visibility Graphs
• RRT
• PRM

Modelling path planning as a graph search problem 



• Transform continuous/discrete/topological maps to a discrete graph
• Why?

• Model the path planning problem as a search problem
• Graph theory has lots of tools
• Real-time capable algorithms
• Can accommodate for evolving maps

1. Divide space into simple, connected regions, or “cells”
2. Determine adjacency of open cells 
3. Construct a connectivity graph
4. Find cells with initial and goal configuration 
5. Search for a path in the connectivity graph to join them
6. From the sequence of cells, compute a path within each cell

• e.g. passing through the midpoints of cell boundaries or by 
sequence of wall following movements

Graph Construction



Topological Maps

• Good abstract representation
• Tradeoff in # of nodes

• Complexity vs. accuracy
• Efficient in large, sparse environments
• Loss in geometric precision

• Edges can carry weights
• Con: Limited information

Geometry-Based Planners



(Lab 9-12)

Adaptive Cell Decomposition

Fixed Cell Decomposition



Trapezoidal Cell Decomposition



• Connect initial and goal locations with all visible vertices
• Connect each obstacle vertex to every visible obstacle vertex
• Remove edges that intersect the interior of an obstacle
• Plan on the resulting graph

Ioannis Rekleitis, 
South CarolinaVisibility Graphs



• Rather than computing the C-Space explicitly, we sample it
• Often efficient in high dimensional spaces

• Compute if a robot configuration has collisions

• Just requires forward kinematics 

• (Local path plans between configurations)

• Examples

• Probabilistic Roadmaps (PRM)

• Rapidly Exploring Random Trees (RRT)

Sampling-Based Planners



• Configurations are sampled by picking coordinates at random

Probabilistic Roadmaps



• Configurations are sampled by picking coordinates at random
• Sampled configurations are tested for collision

Probabilistic Roadmaps



• Configurations are sampled by picking coordinates at random
• Sampled configurations are tested for collision
• Each configuration is linked by straight paths to its nearest neighbors

Probabilistic Roadmaps



• Configurations are sampled by picking coordinates at random
• Sampled configurations are tested for collision
• Each configuration is linked by straight paths to its nearest neighbors
• The collision-free links are retained as local paths to form the PRM

Probabilistic Roadmaps



• Configurations are sampled by picking coordinates at random
• Sampled configurations are tested for collision
• Each configuration is linked by straight paths to its nearest neighbors
• The collision-free links are retained as local paths to form the PRM
• The start and goal configurations are included as milestones

Probabilistic Roadmaps

start

goal



• Configurations are sampled by picking coordinates at random
• Sampled configurations are tested for collision
• Each configuration is linked by straight paths to its nearest neighbors
• The collision-free links are retained as local paths to form the PRM
• The start and goal configurations are included as milestones
• The PRM is searched for a path from start to goal

Probabilistic Roadmaps

start

goal



• Considerations
• Single query/multi query
• How are nodes placed?

• Uniform sampling strategies
• Non-uniform sampling 

strategies
• How are local neighbors found?
• How is collision detection 

performed?
• Dominates time consumption 

in PRMs

Probabilistic Roadmaps

start

goal



1. Maintain a tree rooted at the starting point
2. Choose a point at random from free space
3. Find the closest configuration already in the tree
4. Extend the tree in the direction of the new configuration

Rapidly Exploring Random Trees (RRT)



Rapidly Exploring Random Trees (RRT) 
– Uniform/biased sampling

Aaron Becker, UH, Wolfram Player example



● Sensitive to step-size (∆q)

○ Small: many nodes, closely spaced, slowing down nearest neighbor computation

○ Large: Increased risk of suboptimal plans / not finding a solution

● How are samples chosen?

○ Uniform sampling may need too many samples to find the goal

○ Biased sampling towards goal can ease this problem

● How are closest neighbors found?

● How are local paths generated?

● Variations
○ RRT Connect, A*-RRT, Informed RRT*, Real-Time RRT*, Theta*-RRT, etc.

Rapidly Exploring Random Trees (RRT) - Considerations
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Modelling path planning as a graph search problem 

Real world Configuration 
Space

Map 
Representation

Graph 
Search

Graph 
Construction

• Breadth first
• Depth first
• Dijstra
• A*

https://pythonrobotics.readthedocs.io/en/latest/modules
/path_planning.html#basic-rrt

https://pythonrobotics.readthedocs.io/en/latest/modules/path_planning.html#basic-rrt
https://pythonrobotics.readthedocs.io/en/latest/modules/path_planning.html#basic-rrt


Graph Search
• What is the simplest thing to do?

• Random or brute force search
• Other methods?

• Uninformed search
• Depth First Search (DFS)
• Breadth First Search (BFS)
• Dijsktra’s Search (LCFS)

• Informed Search
• Greedy
• A*
• (and many more)



Vocabulary 
• Node, edge, parents/children, branching factor, depth

Definitions
• Complete 

• Guaranteed to find a solution in finite time 
• Time complexity

• Worst-case run time
• Space complexity

• Worst-case memory
• Optimality

• A search is optimal if it is complete, and only returns cost-minimizing solutions

Comparing Search Algorithms



S

Algorithms and Search
• What is the simplest thing to do?

• Random or brute force search
• How many grid traversals will brute force take?

• First establish a search order
• Advance x first, then increment y and decrease x, 

etc.

1 2 3
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Find a goal
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Search order: N, E, S, W
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Find a goal
• What is the simplest thing to do?

• Random or brute force search
• Other methods?

• Depth First Search (DFS)

Search order: N, E, S, W

y

x



Algorithms and Search
• What is the simplest thing to do?

• Random or brute force search
• Other methods?

• Depth First Search (DFS)
• Breadth First Search (BFS)
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Depth First Search (DFS)
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5

Depth First Search (DFS)
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Why am I not also 
adding (1,0)?
• Keep track of what 

is already on the 
frontier
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Find a goal
• Common graph structure

• For every node, n
• you have a set of actions, a
• that moves you to a new node, n’

y

x

n
a1

a2

a3
n’1

n’2

n’3

Search Algorithms, General



Sy

x

n = state(init)
frontier.append(n)
while(frontier not empty)

n = pull state from frontier
append n to visited
if n = goal, return solution
for all actions in n

n’ = a(n)
if n’ not visited

append n’ to frontier

visited

…

frontier

…

X*Y
How much space 
to allocate to 
your buffers?

Search Algorithms, General



visited

…

X*Y

frontier
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n = state(init)
frontier.append(n)
while(frontier not empty)

n = pull state from frontier
append n to visited
if n = goal, return solution
for all actions in n

n’ = a(n)
if n’ not visited

append n’ to frontier

Depth First Search (DFS)

0,0
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n = state(init)
frontier.append(n)
while(frontier not empty)

n = pull state from frontier
append n to visited
if n = goal, return solution
for all actions in n

n’ = a(n)
if n’ not visited

append n’ to frontier

1,0

0,1 0,0

Depth First Search (DFS)



visited
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n = state(init)
frontier.append(n)
while(frontier not empty)

n = pull state from frontier
append n to visited
if n = goal, return solution
for all actions in n

n’ = a(n)
if n’ not visited

append n’ to frontier

1,0
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0,1

1,0

Depth First Search (DFS)



visited

…
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n = state(init)
frontier.append(n)
while(frontier not empty)

n = pull state from frontier
append n to visited
if n = goal, return solution
for all actions in n

n’ = a(n)
if n’ not visited

append n’ to frontier
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Depth First Search (DFS)
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frontier.append(n)
while(frontier not empty)

n = pull state from frontier
append n to visited
if n = goal, return solution
for all actions in n

n’ = a(n)
if n’ not visited

append n’ to frontier
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Depth First Search (DFS)
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n = state(init)
frontier.append(n)
while(frontier not empty)

n = pull state from frontier
append n to visited
if n = goal, return solution
for all actions in n

n’ = a(n)
if n’ not visited

append n’ to frontier
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Frontier Buffer?
• Last-In First-Out (LIFO) Buffer

etc…

Depth First Search (DFS)



(0,0)

(0,1) (1,0)

(0,2) (1,1)

(0,3) (1,2)

(0,4) (1,3)

and so on…

Memory grows 
linearly with the 
depth of the 
graph

• Is it complete?
• Yes, but only on finite graphs

• What is the time complexity?
• O(bm)

• What is the space complexity?
• O(bm)
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frontier.append(n)
while(frontier not empty)

n = pull state from frontier
if n is goal, return solution
for all actions in n

n’ = a(n)
if n’ not visited

append n’ to frontier
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Memory grows exponentially 
with the depth of the graph

(0,0)
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Breadth First Search (BFS)
• Is it complete?

• Yes, as long as b is finite
• Is it optimal?

• Yes
• What is the time complexity?

• O(bm)
• What is the space complexity?

• O(bm)
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BFS: Memory and Computation
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Uninformed Search Algorithms, General
• When is DFS appropriate?

• If the memory is restricted 
• If solutions tend to occur at the same depth in the tree 

• When is DFS inappropriate?
• If some paths have infinite length / if the graph contains cycles
• If some solutions are very deep, while others are very shallow

• When is BFS appropriate?
• If you need to find the shortest path
• If memory is not a problem 
• If some solutions are shallow
• If there might be infinite paths 

• When is BFS inappropriate?
• If memory is limited / if the branching factor is very large
• If solutions tend to be located deep in the tree 



• Is BFS / DFS possible for your task on the Artemis?
• What is the maximum branching factor?

• b = 4
• What is the longest path?

• m ∼ 20*20 = 400
• Depth First Search

• Frontier: O(bm) = 1,600 nodes
• Float -> 6.4kB
• Artemis memory?

• 1MB flash and 384k RAM
• Breadth First Search

• Frontier: O(bm) = 420*20 = 6.7e240 nodes

ECE4160/5160 – MAE 4910/5910 Fast Robots
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BFS: Memory and Computation

Frontier size:
• 4
• 12
• 36
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Don’t revisit nodes!

R



Lowest-Cost First Search

• Consider parent cost!

R

G

(2,3)

(2,2)(3,3) (1,3)(2,4)
(2,4)

(3,3)

(2,2)

(1,3)

Data structure
• n.state
• n.parent
• n.cost
• n.action

Search order: N, E, S, W

2 1 2 3

What cost heuristic could 
we add?
• Go straight, cost 1
• Turn one quadrant, cost 1

(3,4) 2 (3,2)2
(3,4)

(3,2)

(1,4)
(1,4)

2 2 (2,1)

(2,1)

(1,2)

(1,2)

2 1 2

(3,1)

(3,1) (2,0)

(2,0)

(1,1)2 1 2

Cost?

What node to expand next?



Lowest-Cost First Search

• Consider parent cost!

R

G

(2,4)

(3,3)

(2,2)

(1,3)

Search order: N, E, S, W

What cost heuristic could 
we add?
• Go straight, cost 1
• Turn one quadrant, cost 1

(3,4)

(3,2)

(1,4)

(2,1)

(1,2)

(3,1)

(2,0)

n = state(init)
frontier.append(n)
while(frontier not empty)

n = pull state from frontier
visited.append(n)
if n = goal, return solution
for all actions in n

n’ = a(n)
if n’ not visited

priority = heuristic(goal,n’)
frontier.append(priority)



• Is it complete?
• Yes, as long as path costs are positive

• What is the time complexity?
• O(bm)

• What is the space complexity?
• O(bm)

Lowest-Cost First Search

https://www.youtube.com/watch?v=t7UjtzqIXSA

https://www.youtube.com/watch?v=t7UjtzqIXSA


Could we be smarter?

• Sure, you know the graph and you know the goal is!
• …Informed search

• Consider parent cost, and..
• ..estimate the shortest path to the “goal”

• Assign a value to the frontier
• Pick frontier closest to the goal (minimize distance)
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Informed Search Search order: N, E, S, W
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• Greedy Search
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(1,4) (2,3)

Define a heuristic to 
target the goal
• Manhatten distance
• abs(xS-xG)+abs(yS-yG)
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2 0



Informed Search Search order: N, E, S, W

• Greedy Search

S

1

2

3 4
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n = state(init)
frontier.append(n)
while(frontier not empty)

n = pull state from frontier
visited.append(n)
if n = goal, return solution
for all actions in n

n’ = a(n)
if n’ not visited

priority = heuristic(goal,n’)
frontier.append(priority)
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Informed Search Search order: N, E, S, W

• Greedy Search
• Complete?

• No
• Time complexity?

• O(bm)
• Space complexity?

• O(bm)
• Optimal?

• no…

6 7 8 9

10



Search Algorithms, General
• Breadth First Search

• Complete and optimal
• …but searches everything

• Lowest-Cost First Algorithm
• Complete and optimal
• …but it wastes time exploring in directions that aren’t promising 

• Greedy Search 
• Complete (in most cases)
• …only explores promising directions

Considers parent cost

Considers goal

A*



S

Find a treasure
Informed Search Search order: N, E, S, W

• A* (“A-star”)

n = state(init)
frontier.append(n)
while(frontier not empty)

n = pull state from frontier
if n = goal, return solution
for all actions in n

n’ = a(n)
if ((n’ not visited or

(visited and n’.cost < n_old.cost))
priority = heuristic(goal,n’)+cost
frontier.append(priority)
visited.append(n’)



S

Find a goal
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Informed Search Search order: N, E, S, W

• A* (“A-star”)
• Cost and goal heuristic
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A* Search
• What if the heuristic is too optimistic?

• Estimated cost < true cost
• What if the heuristic is too pessimistic?

• Estimated cost > true cost
• No longer guaranteed to be optimal

• What if the heuristic is just right?
• Pre-compute the cost between all nodes
• Feasible for you?

inadmissible heuristic

admissible heuristic



Informed Search Search order: N, E, S, W

• A* (“A-star”)
• Cost and goal heuristic

(0,0)
(0,1) (1,0)

(0,2) (1,1) (2,0)

(1,2)(0,3) (2,1) (3,0)

1 2
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2 4
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1514

16 15
(3,1)(2,2) 21

1 316 19

(1,4)
2 2

20 (3,2)(2,3)
0 2

21

goal

• Complete?
• Yes!

• Time Complexity
• O(bm)

• Space Complexity
• O(bm)

• Optimal?
• Yes, if the heuristic is admissible!
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Greedy
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Summary
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