Map Representations, Graphs and Graph Search

Outline of the next module on Navigation

- Local planners
- Global localization and planning
- Map representations
- Continuous
- Discrete
- Topological
- Maps as graphs
- Graph Search Algorithms
- Breadth First Search
- Depth First Search
- Dijkstras
- A*

Localization, Sensor and motion models, SLAM
Fast Robots

Navigation

- Navigation breaks down to: Localization, Map Building, Path Planning

Map Representation

(a) Building plan
(b) line-based map
(c) occupancy grid-based map
(d) topological map

Important properties

- Memory allocation
- Computation

Continuous Representations

- Exact decomposition of the environment
- Used mainly in 2D representations
- Closed-world assumption
- Storage proportional to object density
- Example: Continuous line representations
- Using range finders, we can extract lines/line segments in the environment

Fixed Decomposition

- Tessellate the world at a fixed resolution
- Approximate features given the resolution
- Most commonly used: Occupancy grid

Fixed Decomposition

Adaptive Cell Decomposition

- Adapt cell size to features

Topological Decomposition

- A topological representation is a graph that specifies nodes and edges
- Nodes denote areas in the environment
- Edges describe environment connectivity
- Robots can...
- ...detect their current position in terms of the nodes of the topological graph
- ...travel between nodes using robot motion

Topological Decomposition

- A topological representation is a graph that specifies nodes and edges
- Nodes denote areas in the environment
- Edges describe environment connectivity
- Robots can...
- ...detect their current position in terms of the nodes of the topological graph
- ...travel between nodes using robot motion
- Typical for 3D maps

Fast Robots

How to represent the robot pose?

- Physical robots take up space
- Expand obstacles
- Represent maps in configuration space instead of Euclidean space

Map Representation Considerations

- The precision of the map must appropriately match the precision with which the robot needs to achieve its goals
- The precision of the map and the type of features represented must match the precision and data types returned by the robot's sensors
- The complexity of the map representation has direct impact on the computational complexity of reasoning about mapping, localization, and navigation

ECE 4160/5160 MAE 4910/5910

Constructing Graphs

Modelling path planning as a graph search problem

Real world \begin{tabular}{c|c|c|c|c|c|}
Configuration

Space

\Rightarrow

Map

Representation

$\quad \Rightarrow$

Graph

Construction

$\quad \Rightarrow$

Graph

Search

\hline
\end{tabular}

Common alternatives

- Optimal control
- Potential fields

Modelling path planning as a graph search problem

Graph Construction

- Transform continuous/discrete/topological maps to a discrete graph
- Why?
- Model the path planning problem as a search problem
- Graph theory has lots of tools
- Real-time capable algorithms
- Can accommodate for evolving maps

1. Divide space into simple, connected regions, or "cells"
2. Determine adjacency of open cells
3. Construct a connectivity graph
4. Find cells with initial and goal configuration
5. Search for a path in the connectivity graph to join them
6. From the sequence of cells, compute a path within each cell

- e.g. passing through the midpoints of cell boundaries or by sequence of wall following movements

Geometry-Based Planners

Topological Maps

- Good abstract representation
- Tradeoff in \# of nodes
- Complexity vs. accuracy
- Efficient in large, sparse environments
- Loss in geometric precision
- Edges can carry weights
- Con: Limited information

Fixed Cell Decomposition

(Lab 9-12)

Adaptive Cell Decomposition

Trapezoidal Cell Decomposition

Visibility Graphs

- Connect initial and goal locations with all visible vertices
- Connect each obstacle vertex to every visible obstacle vertex
- Remove edges that intersect the interior of an obstacle
- Plan on the resulting graph

Sampling-Based Planners

- Rather than computing the C-Space explicitly, we sample it
- Often efficient in high dimensional spaces
- Compute if a robot configuration has collisions
- Just requires forward kinematics
- (Local path plans between configurations)
- Examples
- Probabilistic Roadmaps (PRM)
- Rapidly Exploring Random Trees (RRT)

Probabilistic Roadmaps

- Configurations are sampled by picking coordinates at random

Probabilistic Roadmaps

- Configurations are sampled by picking coordinates at random
- Sampled configurations are tested for collision

Probabilistic Roadmaps

- Configurations are sampled by picking coordinates at random
- Sampled configurations are tested for collision
- Each configuration is linked by straight paths to its nearest neighbors

Probabilistic Roadmaps

- Configurations are sampled by picking coordinates at random
- Sampled configurations are tested for collision
- Each configuration is linked by straight paths to its nearest neighbors
- The collision-free links are retained as local paths to form the PRM

Probabilistic Roadmaps

- Configurations are sampled by picking coordinates at random
- Sampled configurations are tested for collision
- Each configuration is linked by straight paths to its nearest neighbors
- The collision-free links are retained as local paths to form the PRM
- The start and goal configurations are included as milestones

Probabilistic Roadmaps

- Configurations are sampled by picking coordinates at random
- Sampled configurations are tested for collision
- Each configuration is linked by straight paths to its nearest neighbors
- The collision-free links are retained as local paths to form the PRM
- The start and goal configurations are included as milestones
- The PRM is searched for a path from start to goal

Probabilistic Roadmaps

- Considerations
- Single query/multi query
- How are nodes placed?
- Uniform sampling strategies

realtime robotics

- Non-uniform sampling strategies
- How are local neighbors found?
- How is collision detection performed?
- Dominates time consumption in PRMs

Rapidly Exploring Random Trees (RRT)

1. Maintain a tree rooted at the starting point
2. Choose a point at random from free space
3. Find the closest configuration already in the tree
4. Extend the tree in the direction of the new configuration

Rapidly Exploring Random Trees (RRT) - Uniform/biased sampling

Aaron Becker, UH, Wolfram Player example

Rapidly Exploring Random Trees (RRT) - Considerations

- Sensitive to step-size ($\Delta \mathrm{q}$)
- Small: many nodes, closely spaced, slowing down nearest neighbor computation
- Large: Increased risk of suboptimal plans / not finding a solution
- How are samples chosen?
- Uniform sampling may need too many samples to find the goal
- Biased sampling towards goal can ease this problem
- How are closest neighbors found?
- How are local paths generated?
- Variations
- RRT Connect, A*-RRT, Informed RRT*, Real-Time RRT*, Theta*-RRT, etc.

ECE 4160/5160
 MAE 4910/5910

Prof. Kirstin Hagelskjær Petersen kirstin@cornell.edu

Fast Robots Graph Search

Modelling path planning as a graph search problem

https://pythonrobotics.readthedocs.io/en/latest/modules /path planning.html\#basic-rrt

- Breadth first
- Depth first
- Dijstra
- A*

Graph Search

- What is the simplest thing to do?
- Random or brute force search
- Other methods?
- Uninformed search
- Depth First Search (DFS)
- Breadth First Search (BFS)
- Dijsktra's Search (LCFS)
- Informed Search
- Greedy
- A*
- (and many more)

Comparing Search Algorithms

Vocabulary

- Node, edge, parents/children, branching factor, depth

Definitions

- Complete
- Guaranteed to find a solution in finite time
- Time complexity
- Worst-case run time
- Space complexity
- Worst-case memory

- Optimality
- A search is optimal if it is complete, and only returns cost-minimizing solutions

Algorithms and Search

Search order: N, E, S, W
Find a goal

- What is the simplest thing to do?
- Random or brute force search
- How many grid traversals will brute force take?
- First establish a search order
- Advance x first, then increment y and decrease x, etc.

Algorithms and Search

Search order: N, E, S, W

- What is the simplest thing to do?
- Random or brute force search
- Other methods?
- Depth First Search (DFS)

Find a goal

Algorithms and Search

Search order: N, E, S, W
Find a goal

- What is the simplest thing to do?
- Random or brute force search
- Other methods?
- Depth First Search (DFS)
- Breadth First Search (BFS)

10	14		
6	11	$\hat{\beta}$	
3	7	12	
1	4	8	13
S	2	5	9
X			

Depth First Search (DFS)

Search order: N, E, S, W
Find a goal

Depth First Search (DFS)

Search order: N, E, S, W
Find a goal

Breadth First Search (BFS)

Search order: N, E, S, W
Find a goal

Search Algorithms, General

Find a goal

- Common graph structure
- For every node, n
- you have a set of actions, a
- that moves you to a new node, n'

Search Algorithms, General

```
n = state(init)
frontier.append(n)
while(frontier not empty)
    n = pull state from frontier
    append n to visited
    if n = goal, return solution
    for all actions in n
        n' = a(n)
        if n' not visited
        append n' to frontier
```


How much space to allocate to your buffers?

Depth First Search (DFS)

```
frontier visited
```

```
n = state(init)
```

n = state(init)
frontier.append(n)
frontier.append(n)
while(frontier not empty)
while(frontier not empty)
n = pull state from frontier
n = pull state from frontier
append n to visited
append n to visited
if n = goal, return solution
if n = goal, return solution
for all actions in n
for all actions in n
n'}=\textrm{a}(\textrm{n}
n'}=\textrm{a}(\textrm{n}
if n' not visited
if n' not visited
append n' to frontier

```
            append n' to frontier
```

frontier

Depth First Search (DFS)

```
n = state(init)
frontier.append (n)
while(frontier not empty)
    n = pull state from frontier
    append n to visited
    if n = goal, return solution
    for all actions in n
        n' = a(n)
        if n' not visited
            append n' to frontier
```


frontier
visited

Depth First Search (DFS)

```
n = state(init)
frontier.append(n)
while(frontier not empty)
    n = pull state from frontier
    append n to visited
    if n = goal, return solution
    for all actions in n
        n' = a(n)
        if n' not visited
            append n' to frontier
```


visited

Depth First Search (DFS)

```
        n = state(init)
frontier.append(n)
while(frontier not empty)
    n = pull state from frontier
    append n to visited
    if n = goal, return solution
    for all actions in n
        n' = a(n)
        if n' not visited
            append n' to frontier
```

0,0
0,1
0,2

 frontier visited

Depth First Search (DFS)

```
n = state(init)
frontier.append(n)
while(frontier not empty)
    n = pull state from frontier
    append n to visited
    if n = goal, return solution
    for all actions in n
        n' = a(n)
        if n' not visited
            append n' to frontier
```


1,2
frontier visited

Depth First Search (DFS)

```
n = state(init)
frontier.append(n)
while(frontier not empty)
    n = pull state from frontier
    append n to visited
    if n = goal, return solution
    for all actions in n
        n' = a(n)
        if n' not visited
        append n' to frontier
```


Frontier Buffer?

- Last-In First-Out (LIFO) Buffer

Depth First Search (DFS)

- Is it complete?
- Yes, but only on finite graphs
- What is the time complexity?
- $\mathrm{O}\left(b^{m}\right)$
- What is the space complexity?
- $\mathrm{O}(b m)$

Breadth First Search (BFS)

```
n = state(init)
frontier.append(n)
while(frontier not empty)
    n = pull state from frontier
    if n is goal, return solution
    for all actions in n
        n' = a(n)
        if n' not visited
            append n' to frontier for all actions in \(n\) \(\mathrm{n}^{\prime}=\mathrm{a}(\mathrm{n})\)
if \(n^{\prime}\) not visited
append \(n^{\prime}\) to frontier
```

frontier
0,0
0,1

1,0
0,2
1,1
2,0
0,3
visited

0,0
0,1
1,0

0,2

Breadth First Search (BFS)

- Is it complete?
- Yes, as long as b is finite
- Is it optimal?
- Yes
- What is the time complexity?
- $\mathrm{O}\left(b^{m}\right)$
- What is the space complexity?
- $\mathrm{O}\left(b^{m}\right)$


```
frontier
visited
```

0,0
0,1

1,0
0,2

Type of Buffer?

BFS: Memory and Computation

Frontier size:

- 4
- 12
- 36

Uninformed Search Algorithms, General

- When is DFS appropriate?
- If the memory is restricted
- If solutions tend to occur at the same depth in the tree
- When is DFS inappropriate?
- If some paths have infinite length / if the graph contains cycles
- If some solutions are very deep, while others are very shallow
- When is BFS appropriate?
- If you need to find the shortest path
- If memory is not a problem
- If some solutions are shallow
- If there might be infinite paths
- When is BFS inappropriate?
- If memory is limited / if the branching factor is very large

If solutions tend to be located deep in the tree

ECE4160/5160 - MAE 4910/5910 Fast Robots

- Is BFS / DFS possible for your task on the Artemis?
- What is the maximum branching factor?
- $b=4$
- What is the longest path?
- $m \sim 20^{*} 20=400$
- Depth First Search
- Frontier: $\mathrm{O}(b m)=1,600$ nodes
- Float -> 6.4 kB
- Artemis memory?
- 1MB flash and 384k RAM
- Breadth First Search

- Frontier: $\mathrm{O}\left(b^{m}\right)=4^{20^{*} 20}=6.7 \mathrm{e} 240$ nodes

BFS: Memory and Computation

Frontier size:

- 4
- 12
- 36

Lowest-Cost First Search

- Consider parent cost!

What node to expand next?

Data structure

- n.state
- n.parent
- n.cost
- n.action

What cost heuristic could we add?

- Go straight, cost 1
- Turn one quadrant, cost 1

	$(1,4)$	$(2,4)$	$(3,4)$
	$(1,3)$	R	$(3,3)$
	$(1,2)$	$(2,2)$	$(3,2)$
	G	$(2,1)$	$(3,1)$
		$(2,0)$	

Lowest-Cost First Search

- Consider parent cost!

```
```

n = state(init)

```
```

n = state(init)
frontier.append(n)
frontier.append(n)
while(frontier not empty)
while(frontier not empty)
n = pull state from frontier
n = pull state from frontier
visited.append(n)
visited.append(n)
if n = goal, return solution
if n = goal, return solution
for all actions in n
for all actions in n
n' = a(n)
n' = a(n)
if n' not visited
if n' not visited
priority = heuristic(goal,n')
priority = heuristic(goal,n')
frontier.append(priority)

```
```

 frontier.append(priority)
    ```
```


we add?

- Go straight, cost 1
- Turn one quadrant, cost 1

| | $(1,4)$ | $(2,4)$ | $(3,4)$ |
| :---: | :---: | :---: | :---: |
| | $(1,3)$ | R | $(3,3)$ |
| | $(1,2)$ | $(2,2)$ | $(3,2)$ |
| | G | $(2,1)$ | $(3,1)$ |
| | | $(2,0)$ | |

Lowest-Cost First Search

- Is it complete?
- Yes, as long as path costs are positive
- What is the time complexity?
- $\mathrm{O}\left(b^{m}\right)$
-What is the space complexity?
- $\mathrm{O}\left(b^{m}\right)$

Could we be smarter?

- Sure, you know the graph and you know the goal is!
- ...Informed search
- Consider parent cost, and..
- ..estimate the shortest path to the "goal"
- Assign a value to the frontier
- Pick frontier closest to the goal (minimize distance)

Informed Search

Search order: N, E, S, W

- Greedy Search

Informed Search

- Greedy Search

```
n = state(init)
frontier.append(n)
while(frontier not empty)
    n = pull state from frontier
    visited.append(n)
    if n = goal, return solution
    for all actions in n
        n' = a(n)
        if n' not visited
            priority = heuristic(goal,n')
            frontier.append(priority)
```


Informed Search

Search order: N, E, S, W

- Greedy Search
- Complete?
- No
- Time complexity?
- $\mathrm{O}\left(b^{m}\right)$
- Space complexity?
- $\mathrm{O}\left(b^{m}\right)$
- Optimal?
- no...

Search Algorithms, General

- Breadth First Search
- Complete and optimal
- ...but searches everything
- Lowest-Cost First Algorithm Considers parent cost
- Complete and optimal
- ...but it wastes time exploring in directions that aren't promising
- Greedy Search Considers goal
- Complete (in most cases)
- ...only explores promising directions

Informed Search

Search order: N, E, S, W
Find a treasure

- A* ("A-star")

$$
\begin{aligned}
& \mathrm{n}=\text { state (init) } \\
& \text { frontier.append (} \mathrm{n} \text {) }
\end{aligned}
$$

while(frontier not empty)

$$
\mathrm{n}=\text { pull state from frontier }
$$

$$
\text { if } \mathrm{n}=\text { goal, return solution }
$$

$$
\text { for all actions in } n
$$

$$
n^{\prime}=a(n)
$$

$$
\text { if ((} n^{\prime} \text { not visited or }
$$

$$
\text { (visited and } n^{\prime} \text {.cost } \text {, n_old. cost)) }
$$ priority $=$ heuristic (goal, n^{\prime}) +cost frontier.append(prioricy) visited.append (n^{\prime})

Informed Search

Search order: N, E, S, W
Find a goal

- A* ("A-star")
- Cost and goal heuristic

A* Search

- What if the heuristic is too optimistic?
- Estimated cost < true cost
- What if the heuristic is too pessimistic?
- Estimated cost > true cost
- No longer guaranteed to be optimal
- What if the heuristic is just right?
- Pre-compute the cost between all nodes
- Feasible for you?

Informed Search

- A^{*} ("A-star")
- Cost and goal heuristic

- Complete?
- Yes!
- Time Complexity
- $O\left(b^{m}\right)$
- Space Complexity
- $\mathrm{O}\left(b^{m}\right)$

Optimal?

- Yes, if the heuristic is admissible!

Summary

| LCFS | minimum path | | |
| :---: | :---: | :---: | :---: |
| 7 | 12 | 15 | |
| 4 | 10 | 2 | |
| 2 | 8 | 13 | |
| 1 | 5 | 11 | 14 |
| 5 | 3 | 6 | 9 |

A*

| 10 | | | |
| :---: | :---: | :---: | :---: |
| 6 | 9 | 7 | |
| 3 | 7 | 11 | |
| 1 | 4 | 8 | |
| 5 | 2 | 5 | |

