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• We are learning a lot
• …Ton of work!

• Limit tasks
• Allow teamwork
• Limit writing

• Detailed report every 2-4 labs, instead of every lab
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• Labs 1-5: Implement your robot
• Labs 6-8: Control and stunts
• Labs 9-12: Localization and Navigation

• Lab 9: Mapping
• Flipped classroom: Simulator (Apr 13th) 
• https://cei-lab.github.io/FastRobots-2023/FastRobots-Sim.html

You are almost there!!
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https://cei-lab.github.io/FastRobots-2023/FastRobots-Sim.html


• Labs 1-5: Implement your robot
• Labs 6-8: Control and stunts
• Labs 9-12: Localization and Navigation

• Lab 9: Mapping
• Flipped classroom: Simulator (Apr 13th) 
• Lab 10: Localization (sim), S/U
• Lab 11: Localization (real)
• Lab 12: Navigation

• Lectures
• Bayes Filter/SLAM
• Ethics
• Guest lectures: Katie Bradford (Vecna Robotics) and Adam Kane (ASML)
• Trivia and Showcase (May 9th 9-11.30)

You are almost there!!
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Bayes Filter

xt-1

1. 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁_𝐅𝐅𝐀𝐀𝐀𝐀𝐀𝐀𝐁𝐁𝐀𝐀 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡−1 ,𝑢𝑢𝑡𝑡 , 𝑧𝑧𝑡𝑡 :

2. for all 𝑥𝑥𝑡𝑡 do

3. 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = ∑𝑥𝑥𝑡𝑡−1 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑢𝑢𝑡𝑡 , 𝑥𝑥𝑡𝑡−1) 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡−1

4. 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = 𝜂𝜂 𝑝𝑝(𝑧𝑧𝑡𝑡|𝑥𝑥𝑡𝑡) 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡
5. endfor

6. return 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡

[ Prediction Step ]

[ Update/Measurement Step ]

Measurement Probability / Sensor Model
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Lecture 17: Motion model
• Odometry model
• Velocity model



Probabilistic Sensor Models
𝑝𝑝(𝑧𝑧|𝑥𝑥)
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• Contact Sensors: Bumpers

• Internal/Proprioceptive Sensors
• Accelerometers (spring-mounted masses)
• Gyroscopes (spinning mass, laser light)
• Compasses, inclinometers (earth magnetic field, gravity)

• Range Sensors
• Infrared (intensity)
• Sonar (time of flight)
• Radar (phase and frequency)
• Laser range finders (triangulation, tof, phase)

• Visual Sensors: Cameras

• Satellite-based sensors: GPS

Sensors for Mobile Robots

8



• Probabilistic robotics explicitly models the noise in exteroceptive sensor measurements

• (What about proprioceptive/odometry sensors?)

• Where does the noise come from?

Sensor Model

9



• Larger readings
• Surface material
• Angle between surface normal and direction of sensor 

cone
• Width of the sensor cone of measurement
• Sensitivity of the sensor cone

• Shorter readings
• Crosstalk between different sensors 
• Unmodeled objects in the proximity of the robot, such 

as people

Range Sensor Inaccuracies (“noise”)

α

sensor

smooth 
object 
surface

specular 
reflection

main cone
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• Perfect sensor models…
• 𝑧𝑧 = 𝑓𝑓(𝑥𝑥)
• …practically impossible
• …computationally intractable

• Practical sensor models…
• 𝑝𝑝 𝑧𝑧 𝑥𝑥

• Three common sensor models
• Beam model
• Likelihood model
• Feature-based model

Probabilistic Sensor Model

Up till now our sensor models have 
been simple
• p(z=correct)
• p(z|X) for a small state space
•

11



Beam Model
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• Let there be 𝐾𝐾 individual measurement values within a measurement 𝑧𝑧𝑡𝑡
𝑧𝑧𝑡𝑡 = {𝑧𝑧𝑡𝑡1, 𝑧𝑧𝑡𝑡2 … , 𝑧𝑧𝑡𝑡𝐾𝐾}

• Individual measurements are independent given the robot state

𝑝𝑝 𝑧𝑧𝑡𝑡 𝑥𝑥𝑡𝑡 ,𝑚𝑚) = �
𝑘𝑘=1

𝐾𝐾

𝑝𝑝 𝑧𝑧𝑡𝑡𝑘𝑘 𝑥𝑥𝑡𝑡 ,𝑚𝑚)

• Can you think of violations to that assumption?

• People, errors in the map model m, approximations in the posterior, etc.

• But it makes computation much more tractable…

Beam Model of Range Finders

(Sensor measurements are 
caused by real world objects)
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Typical Measurement Errors of an Range Measurements
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1. Correct Range Measurements 

Beams reflected by obstacles

2. Unexpected Objects 

Beams reflected by persons / 

caused by crosstalk

3. Failures

4. Random measurements

Typical Measurement Errors of an Range Measurements

15



• Reading
• 𝑧𝑧𝑡𝑡𝑘𝑘

• True value
• 𝑧𝑧𝑡𝑡𝑘𝑘∗

• In a location-based map, 𝑧𝑧𝑡𝑡𝑘𝑘∗ is usually 
estimated by ray casting

• Measurement noise
• Narrow Gaussian 𝑝𝑝ℎ𝑖𝑖𝑡𝑡 with mean 
𝑧𝑧𝑡𝑡𝑘𝑘∗ and standard deviation 𝜎𝜎ℎ𝑖𝑖𝑡𝑡

1. Correct Range Measurements 

zt
k* zmax0

𝑝𝑝ℎ𝑖𝑖𝑡𝑡 𝑧𝑧𝑡𝑡𝑘𝑘 𝑥𝑥𝑡𝑡 ,𝑚𝑚) = � 𝜂𝜂𝑓𝑓 𝑧𝑧𝑡𝑡𝑘𝑘 , 𝑧𝑧𝑡𝑡𝑘𝑘∗,𝜎𝜎ℎ𝑖𝑖𝑡𝑡 𝑖𝑖𝑓𝑓 0 ≤ 𝑧𝑧𝑡𝑡𝑘𝑘 ≤ 𝑧𝑧𝑚𝑚𝑚𝑚𝑥𝑥
0 𝑜𝑜𝑜𝑜ℎ𝑏𝑏𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑏𝑏

16



• Real world is dynamic
• Objects not contained in the map can cause 

shorter readings
• treat them as part of the state vector and 

estimate their location
• Or treat them as sensor noise

• The likelihood of sensing unexpected objects 
decreases with range

• Model as an exponential distribution 𝑝𝑝𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑡𝑡

2. Unexpected Objects

zt
k* zmax0

𝑝𝑝𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑡𝑡 𝑧𝑧𝑡𝑡𝑘𝑘 𝑥𝑥𝑡𝑡 ,𝑚𝑚) = � 𝜂𝜂 𝜆𝜆𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑡𝑡 𝑏𝑏
−𝜆𝜆𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑡𝑡 𝑧𝑧𝑡𝑡

𝑘𝑘
𝑖𝑖𝑓𝑓 0 ≤ 𝑧𝑧𝑡𝑡𝑘𝑘 ≤ 𝑧𝑧𝑡𝑡𝑘𝑘∗

0 𝑜𝑜𝑜𝑜ℎ𝑏𝑏𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑏𝑏

R
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p(z=o1|x,m)=1
p(z=o2|x,m)=1/4

p(z=o3|x,m)=1/8
p → 1/(2n)



• Obstacles might be missed altogether 

• The result is a max-range measurement 𝑧𝑧𝑚𝑚𝑚𝑚𝑥𝑥

• Model as a point-mass distribution 𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥

3. Failures

zt
k* zmax0

𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥 𝑧𝑧𝑡𝑡𝑘𝑘 𝑥𝑥𝑡𝑡 ,𝑚𝑚) = 𝐼𝐼(𝑧𝑧 = 𝑧𝑧𝑚𝑚𝑚𝑚𝑥𝑥) = � 1 𝑖𝑖𝑓𝑓 𝑧𝑧 = 𝑧𝑧𝑚𝑚𝑚𝑚𝑥𝑥
0 𝑜𝑜𝑜𝑜ℎ𝑏𝑏𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑏𝑏
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• Range finders can occasionally produce 
entirely unexplainable measurements 

• Modelled as a uniform distribution 
𝑝𝑝𝑜𝑜𝑚𝑚𝑟𝑟𝑟𝑟 over the measurement range

4. Random Measurements

zt
k* zmax0

𝑝𝑝𝑜𝑜𝑚𝑚𝑟𝑟𝑟𝑟 𝑧𝑧𝑡𝑡𝑘𝑘 𝑥𝑥𝑡𝑡 ,𝑚𝑚) = �
1

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖𝑓𝑓 0 ≤ 𝑧𝑧𝑡𝑡𝑘𝑘 ≤ 𝑧𝑧𝑚𝑚𝑚𝑚𝑥𝑥

0 𝑜𝑜𝑜𝑜ℎ𝑏𝑏𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑏𝑏
19



Beam Model

zt
k* zmax0

zt
k* zmax0

zt
k* zmax0

zt
k* zmax0

20



• The four different distributions are 
mixed by a weighted average

Beam Range Model as a Mixture Density

zt
k* zmax0

𝑝𝑝 𝑧𝑧𝑡𝑡𝑘𝑘 𝑥𝑥𝑡𝑡 ,𝑚𝑚) =

𝛼𝛼ℎ𝑖𝑖𝑡𝑡
𝛼𝛼𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑡𝑡
𝛼𝛼𝑚𝑚𝑚𝑚𝑥𝑥
𝛼𝛼𝑜𝑜𝑚𝑚𝑟𝑟𝑟𝑟

. 

𝑝𝑝ℎ𝑖𝑖𝑡𝑡 𝑧𝑧𝑡𝑡𝑘𝑘 𝑥𝑥𝑡𝑡 ,𝑚𝑚)
𝑝𝑝𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑡𝑡 𝑧𝑧𝑡𝑡𝑘𝑘 𝑥𝑥𝑡𝑡 ,𝑚𝑚)
𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥 𝑧𝑧𝑡𝑡𝑘𝑘 𝑥𝑥𝑡𝑡 ,𝑚𝑚)
𝑝𝑝𝑜𝑜𝑚𝑚𝑟𝑟𝑡𝑡 𝑧𝑧𝑡𝑡𝑘𝑘 𝑥𝑥𝑡𝑡 ,𝑚𝑚)

• 𝛼𝛼ℎ𝑖𝑖𝑡𝑡 + 𝛼𝛼𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑡𝑡 + 𝛼𝛼𝑚𝑚𝑚𝑚𝑥𝑥 + 𝛼𝛼𝑜𝑜𝑚𝑚𝑟𝑟𝑟𝑟= 1

21



Algorithm for Beam Model

1. 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝐛𝐛𝐁𝐁𝐁𝐁𝐀𝐀_𝐀𝐀𝐁𝐁𝐫𝐫𝐀𝐀𝐁𝐁_𝐟𝐟𝐀𝐀𝐫𝐫𝐟𝐟𝐁𝐁𝐀𝐀_𝐀𝐀𝐀𝐀𝐟𝐟𝐁𝐁𝐀𝐀 𝑧𝑧𝑡𝑡 , 𝑥𝑥𝑡𝑡 ,𝑚𝑚 :

2. 𝑞𝑞 = 1

3. for 𝑘𝑘 = 1 𝑜𝑜𝑜𝑜 𝐾𝐾 𝑑𝑑𝑜𝑜

4. compute 𝑧𝑧𝑡𝑡𝑘𝑘∗ for 𝑧𝑧𝑡𝑡𝑘𝑘 using ray casting

5. 𝑝𝑝 = 𝛼𝛼ℎ𝑖𝑖𝑡𝑡. 𝑝𝑝ℎ𝑖𝑖𝑡𝑡 𝑧𝑧𝑡𝑡𝑘𝑘 𝑥𝑥𝑡𝑡 ,𝑚𝑚) + 𝛼𝛼𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑡𝑡 . 𝑝𝑝𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑡𝑡 𝑧𝑧𝑡𝑡𝑘𝑘 𝑥𝑥𝑡𝑡 ,𝑚𝑚)

6. + 𝛼𝛼𝑚𝑚𝑚𝑚𝑥𝑥 . 𝑝𝑝𝑚𝑚𝑚𝑚𝑥𝑥 𝑧𝑧𝑡𝑡𝑘𝑘 𝑥𝑥𝑡𝑡 ,𝑚𝑚) + 𝛼𝛼𝑜𝑜𝑚𝑚𝑟𝑟𝑟𝑟 . 𝑝𝑝𝑜𝑜𝑚𝑚𝑟𝑟𝑟𝑟 𝑧𝑧𝑡𝑡𝑘𝑘 𝑥𝑥𝑡𝑡 ,𝑚𝑚)

7. 𝑞𝑞 = 𝑞𝑞.𝑝𝑝

8. return 𝑞𝑞

22



• Intrinsic Parameters Θ of the beam range model

• 𝛼𝛼ℎ𝑖𝑖𝑡𝑡  , 𝛼𝛼𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑡𝑡 , 𝛼𝛼𝑚𝑚𝑚𝑚𝑥𝑥 , 𝛼𝛼𝑜𝑜𝑚𝑚𝑟𝑟𝑟𝑟 , 𝜆𝜆𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑡𝑡
• Affect the likelihood of any sensor measurement

• Estimation Methods

• Guesstimate the resulting density

• Learn parameters using a Maximum Likelihood Estimator 

• Hill Climbing, Gradient descent, Genetic algorithms, etc.

Parameters of Beam Range Model

23



Raw Sensor Data

(True range is 300 cm and maximum range is 500 cm)

Sonar senor data Laser range sensor
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Approximation Results of Beam Model (with MLE)
So

na
r

Da
ta

La
se

r
Da

ta

300 cm 300 cm

400 cm400 cm
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Beam Model in Action

Likelihood 𝑝𝑝(𝑧𝑧𝑡𝑡|𝑥𝑥𝑡𝑡,𝑚𝑚) for all positions 𝑥𝑥𝑡𝑡 projected into the 
map. The darker a position, the larger 𝑝𝑝(𝑧𝑧𝑡𝑡|𝑥𝑥𝑡𝑡 ,𝑚𝑚)

26

Laser scan projected into a 
partial map 𝑚𝑚.



• Overconfident

• Assumes independence between individual measurements

• Models physical causes for measurements

• Implementation involves learning parameters based on real data

• Limitations
• Different models are needed for every possible scenario (e.g. hit angles for intensity 

sensors)
• Raytracing is computationally expensive

• But can be pre-processed
• Not smooth for small obstacles, at edges, or in cluttered environments

Summary of Beam Model

27



Likelihood Fields
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• Instead of following along the beam, just check the end point

• Project sensor scan zt into the map and compute the closest end point

• Probability function is a mixture of

• a Gaussian distribution with mean at the distance to closest obstacle

• a uniform distribution for random measurements

• a point mass distribution for max range measurements

Likelihood Fields of Range Finders

29



Measurement Noise

o1 o2 o3 zmax

𝑝𝑝ℎ𝑖𝑖𝑡𝑡(𝑧𝑧𝑘𝑘𝑡𝑡)

30

• Modelled using Gaussians



• Modelled using Gaussians
• In xy space, this involves finding the nearest obstacle in the map
• The probability of a sensor measurement is given by a Gaussian that depends on the 

euclidean distance between measurement coordinates and nearest object in the map m

Measurement Noise

o1 o2 o3 zmax

𝑝𝑝ℎ𝑖𝑖𝑡𝑡(𝑧𝑧𝑘𝑘𝑡𝑡)

31

f(3|3.3,𝜎𝜎)



• Robot pose in world frame: xt = (x, y, θ)T

• Sensor measurement in the robot frame: (xk,sens , yk,sens, θk,sens)

• zk
t hit/”end” points in the world frame

Likelihood Fields for Range Finders

𝑥𝑥𝑧𝑧𝑡𝑡𝑘𝑘
𝑦𝑦𝑧𝑧𝑡𝑡𝑘𝑘

=
𝑥𝑥𝑧𝑧𝑘𝑘𝑡𝑡
𝑦𝑦𝑧𝑧𝑘𝑘𝑡𝑡

+
cos(𝜃𝜃)𝑧𝑧𝑘𝑘𝑡𝑡 −sin(𝜃𝜃)
sin(𝜃𝜃)𝑧𝑧𝑘𝑘𝑡𝑡 cos(𝜃𝜃)

𝑥𝑥𝑧𝑧𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑦𝑦𝑧𝑧𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑧𝑧𝑘𝑘𝑡𝑡
+ 𝑧𝑧𝑡𝑡𝑘𝑘

cos(𝜃𝜃 + 𝜃𝜃𝑘𝑘,𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠)
𝑧𝑧 sin(𝜃𝜃 + 𝜃𝜃𝑘𝑘,𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠)𝑘𝑘𝑡𝑡

32



• Assume independence between individual 
measurements

• Three types of sources of noise and uncertainty

• Measurement noise

• Failures

• Max range readings are modelled by a 
point-mass distribution

• Unexplained random measurements

• Uniform distribution

Likelihood Fields for Range Finders

o1 o2 o3 zmax

o1 o2 o3 zmax
33



Algorithm for Likelihood Fields

1. 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝐀𝐀𝐀𝐀𝐥𝐥𝐁𝐁𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐟𝐟_𝐟𝐟𝐀𝐀𝐁𝐁𝐀𝐀𝐟𝐟_𝐀𝐀𝐁𝐁𝐫𝐫𝐀𝐀𝐁𝐁_𝐟𝐟𝐀𝐀𝐫𝐫𝐟𝐟𝐁𝐁𝐀𝐀_𝐀𝐀𝐀𝐀𝐟𝐟𝐁𝐁𝐀𝐀 𝑧𝑧𝑡𝑡 , 𝑥𝑥𝑡𝑡 ,𝑚𝑚 :

2. q = 1

3. for 𝑘𝑘 = 1 𝑜𝑜𝑜𝑜 𝐾𝐾 𝑑𝑑𝑜𝑜

4. 𝑥𝑥𝑧𝑧𝑘𝑘𝑡𝑡 = 𝑥𝑥 + 𝑥𝑥𝑧𝑧𝑘𝑘,𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠 cos 𝜃𝜃 − 𝑦𝑦𝑧𝑧𝑘𝑘,𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠 sin 𝜃𝜃 + 𝑧𝑧𝑘𝑘𝑡𝑡cos(𝜃𝜃 + 𝜃𝜃𝑘𝑘,𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠)

5. 𝑦𝑦𝑧𝑧𝑘𝑘𝑡𝑡 = 𝑦𝑦 + 𝑦𝑦𝑧𝑧𝑘𝑘,𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠 cos 𝜃𝜃 + 𝑥𝑥𝑧𝑧𝑘𝑘,𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠 sin 𝜃𝜃 + 𝑧𝑧𝑘𝑘𝑡𝑡sin(𝜃𝜃 + 𝜃𝜃𝑘𝑘,𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠)

6. 𝑑𝑑𝑖𝑖𝑒𝑒𝑜𝑜 = min
𝑥𝑥′,𝑦𝑦′

(𝑥𝑥𝑧𝑧𝑘𝑘𝑡𝑡 − 𝑥𝑥′)2 + (𝑦𝑦𝑧𝑧𝑘𝑘𝑡𝑡 − 𝑦𝑦′)2 | 𝑥𝑥′,𝑦𝑦′ occupied in 𝑚𝑚

7. 𝑞𝑞 = 𝑞𝑞. (𝑧𝑧ℎ𝑖𝑖𝑡𝑡 . 𝑓𝑓 𝑑𝑑𝑖𝑖𝑒𝑒𝑜𝑜; 0,𝜎𝜎ℎ𝑖𝑖𝑡𝑡 + 𝑧𝑧𝑜𝑜𝑚𝑚𝑠𝑠𝑟𝑟
𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚

) 

8. return 𝑞𝑞
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Transform sensor 
reading to world 
coordinate frame

Find distance to 
closest object

Compute likelihood 
of the reading

Return the product 
of likelihoods



Likelihood Field from Sensor Data

Sensor data projected into map Corresponding likelihood function
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San Jose Tech Museum

Occupancy grid map Likelihood field
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• Advantages

• Highly efficient (computation in 2D instead of 3D)

• Smooth w.r.t. to small changes in robot position

• Limitations

• Does not model people and other dynamics that might cause short readings

• Ignores physical properties of beams

Summary of Likelihood Fields
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Feature Based Models
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• Extract features from dense raw measurements

• For range sensors: lines and corners

• Often from cameras (edges, corners, distinct patterns, etc.)

• Feature extraction methods 

• Features correspond to distinct physical objects in the real world and are often referred 
to as landmarks

• Sensors output the range and/or bearing of the landmark w.r.t to the robot frame

• Trilateration

• Triangulation

• Inference in the feature space can be more efficient

Feature Based Models

39



Trilateration using Range Measurements
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Trilateration using Range Measurements
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• Robustness comes from explicitly modeling sensor uncertainty

• Measurement likelihood is given by “probabilistically comparing” the actual with the 
expected measurement

• Often, good models can be found by
1. Determining a parametric model of noise free measurements
2. Analyzing the sources of noise
3. Adding adequate noise to parameters (mixed density functions)
4. Learning (and verifying) parameters by fitting model to data

• It is extremely important to be aware of the underlying assumptions!

Summary of Sensor Models
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1. Thrun, Sebastian, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT 
press, 2005.

2. http://ais.informatik.uni-freiburg.de/teaching/ss10/robotics/slides/07-sensor-
models.pdf

3. http://www.cs.cmu.edu/~16831-f14/notes/F12/16831_lecture03_mtaylormshomin.pdf

4. Gaussian Distribution: https://www.asc.ohio-state.edu/gan.1/teaching/spring04/Chapter3.pdf
5. Gaussian Distribution: 
http://www2.stat.duke.edu/~rcs46/modern_bayes17/lecturesModernBayes17/lecture-
3/03-normal-distribution.pdf

Reference
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