Prof. Kirstin Hagelskjær Petersen kirstin@cornell.edu

1

## ECE 4160/5160 MAE 4910/5910

## **Fast Robots** Monte Carlo Localization Brief intro to SLAM



### ECE 4160/5160 MAE 4910/5910

Prof. Kirstin Hagelskjær Petersen kirstin@cornell.edu

2

# Lab 10



#### Lab 10 – Localization in Simulation

- <u>https://cei-lab.github.io/FastRobots-2023/Lab10.html</u>
- Pass/Fail
- To dos
  - Read the full lab and the notebook (before you show up to lab!)
  - Perform Grid localization for the sample trajectory
  - Video demo
  - Linda Li's example from 2022: <u>https://lyl24.github.io/lyl24-ece4960/lab11</u>
  - Discuss...
    - Control
    - Motion model and the prediction step
    - Sensor model and the update step
    - Choosing parameters, what effect do the parameters have
    - Ways to mitigate the computational load
    - Evaluate how well the Bayes filter works
    - How well will it work for your robot

Prof. Kirstin Hagelskjær Petersen kirstin@cornell.edu

4

## ECE 4160/5160 MAE 4910/5910

## Fast Robots Localization



#### **Grid-Based Localization**

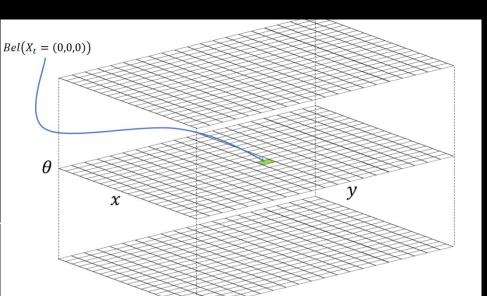
- Simple
- ...but is computationally expensive for large workspaces
- **1.** Algorithm Bayes\_Filter  $(bel(x_{t-1}), u_t, z_t)$ :
- 2. for all  $x_t$  do

3. 
$$\overline{bel}(x_t) = \sum_{x_{t-1}} p(x_t | u_t, x_{t-1}) \ bel(x_{t-1})$$

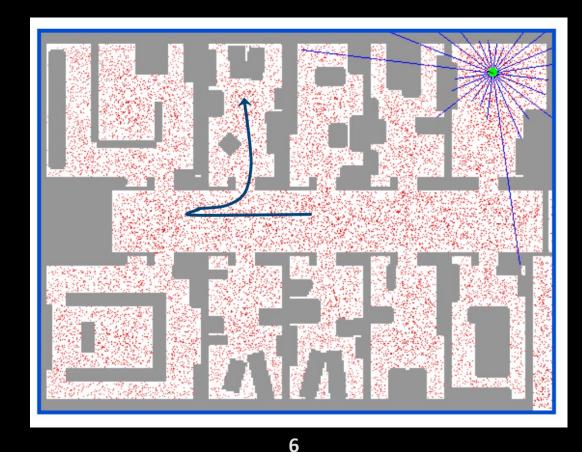
4. 
$$bel(x_t) = \eta p(z_t|x_t) \overline{bel}(x_t)$$

- 5. endfor
- 6. return  $bel(x_t)$

Fast Robots

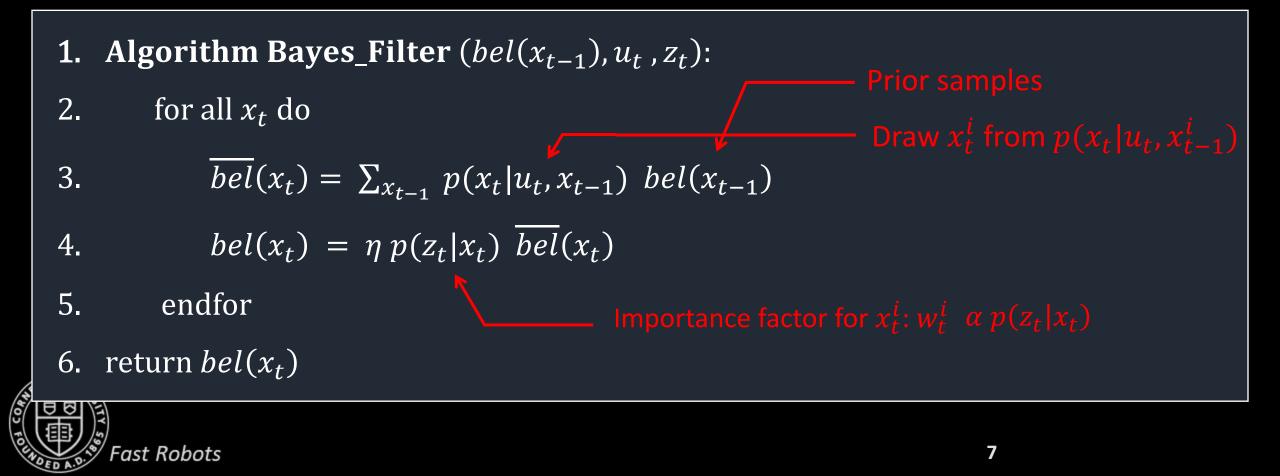


- Non-parametric approach based on Particle Filters
- Model the distribution by samples
  - Prediction step
    - Draw from the samples
    - (Move forward based on motion model)
  - Update step
    - Weigh samples by their importance
    - (Sensor model)
  - Resample based on their weight
- The more samples we use, the better the estimate!

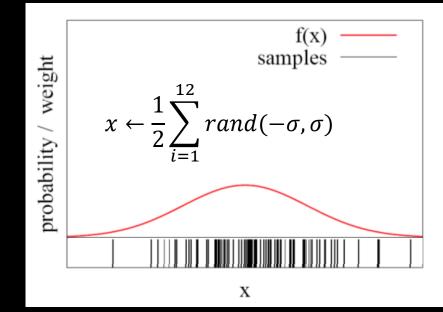


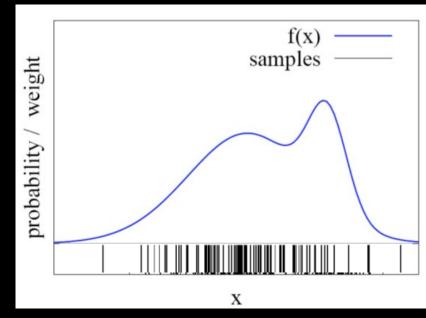


- Non-parametric approach based on Particle Filters
- Model the distribution by samples



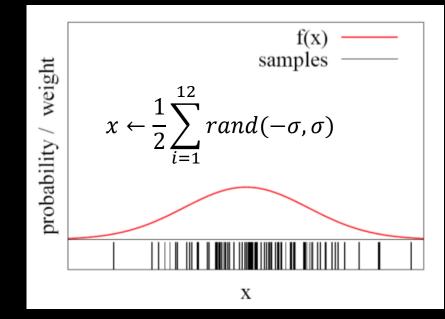
- How do you obtain samples from an arbitrary distribution?
  - Closed form solution for a uniform distribution
  - Closed form solution for Gaussian distribution

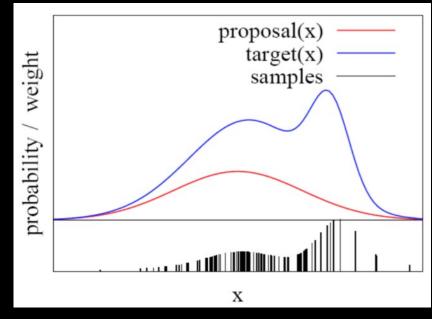






- How do you obtain samples from an arbitrary distribution?
  - Closed form solution for a uniform distribution
  - Closed form solution for Gaussian distribution
- Use a *proposal distribution* to generate samples from the *target distribution*
- Account for differences using a weight
  - w = target/proposal





9



- Each particle, *j*, is a pose hypothesis
- Proposal distribution from the motion model  $x_t^{[j]} \sim p(x_t | x_{t-1}, u_t)$
- *Correction* via the observation model

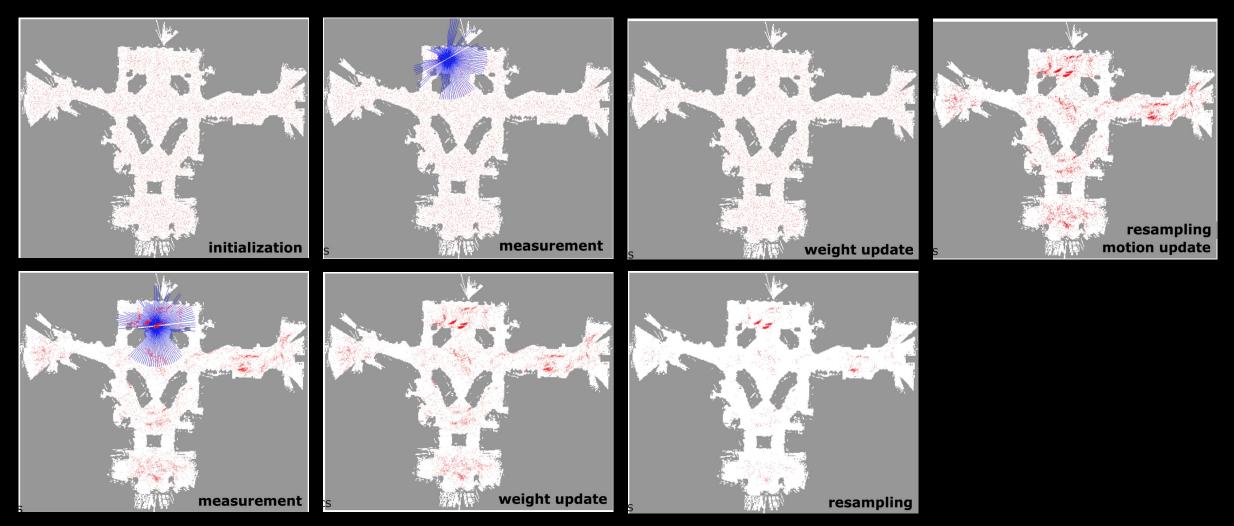
$$w_t^{[j]} = \frac{target(x_t^{[j]})}{proposal(x_t^{[j]})} = p(z_t|x_t)$$

- Resample
  - Draw sample *I* with probability  $w_t^{[j]}$  and repeat *J* times

```
https://www.cs.uml.edu/~holly/teaching/4510
and5490/fall2018/Lecture-Particle-Filters.pdf
```

$$\begin{aligned} & \textbf{Particle\_filter}(\mathcal{X}_{t-1}, u_t, z_t): \\ & 1: \quad \bar{\mathcal{X}}_t = \mathcal{X}_t = \emptyset \\ & 2: \quad \text{for } j = 1 \text{ to } J \text{ do} \\ & 3: \quad \text{sample } x_t^{[j]} \sim p(x_t \mid u_t, x_{t-1}^{[j]}) \\ & 4: \quad w_t^{[j]} = p(z_t \mid x_t^{[j]}) \\ & 5: \quad \bar{\mathcal{X}}_t = \bar{\mathcal{X}}_t + \langle x_t^{[j]}, w_t^{[j]} \rangle \\ & 6: \quad \text{endfor} \\ & 7: \quad \text{for } j = 1 \text{ to } J \text{ do} \\ & 8: \quad \text{draw } i \in 1, \dots, J \text{ with probability} \propto w_t^{[i]} \\ & 9: \quad \text{add } x_t^{[i]} \text{ to } \mathcal{X}_t \\ & 10: \quad \text{endfor} \\ & 11: \quad \text{return } \mathcal{X}_t \end{aligned}$$

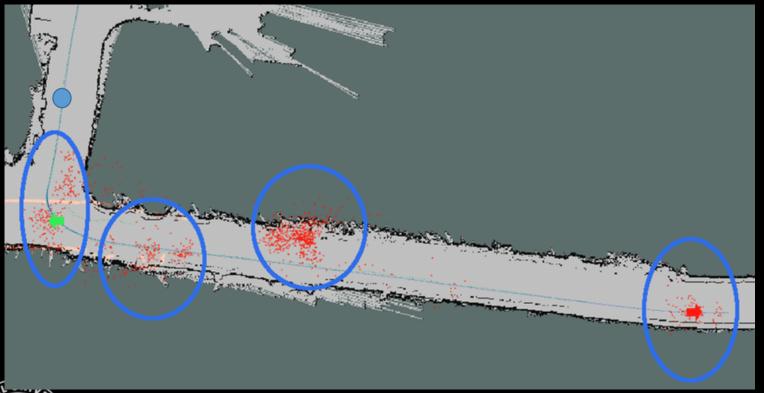






https://www.cs.uml.edu/~holly/teaching/4510and5490/fall2018/Lecture-Particle-Filters.pdf

- How would you deal with a kidnapped robot situation?
  - Randomly insert samples proportional to the average likelihood of the particles





- Pros
  - Works well for highuncertainty scenarios
  - Much more efficient that the grid cells
- Cons
  - Scales poorly with higher dimensional workspaces

Prof. Kirstin Hagelskjær Petersen kirstin@cornell.edu

## ECE 4160/5160 MAE 4910/5910

## Fast Robots Brief intro to SLAM



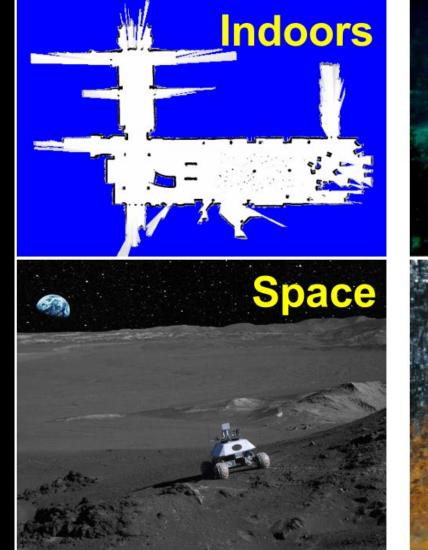
#### **Related Terms**

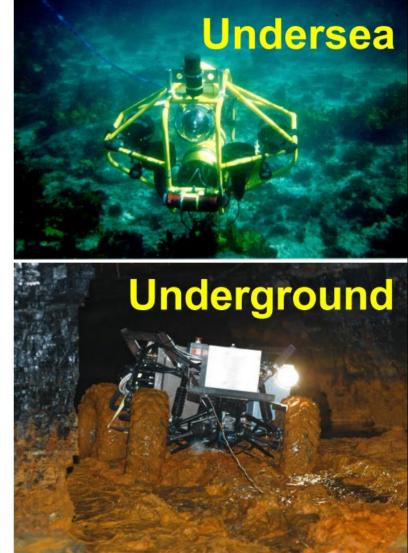
- State estimation
- Localization → Inferring a location given a map
- Mapping  $\rightarrow$  Inferring a map given a location
- SLAM → Learning a map and locating the robot simultaneously
- Navigation
- Motion planning



#### **Related Terms**

- State estimation
- Localization
- Mapping
- SLAM
- Navigation
- Motion planning







#### Given all we have learned...

- Transformation matrices
- Sensor and actuators (and probabilistic models)
- Controllers (PID, LQR)
- Mapping
- Localization
  - Bayes Filter and grid-localization → Add grid-occupancy
- Graph Search and Planning

...how would you implement SLAM?
(where could your estimate of the map fit in?)



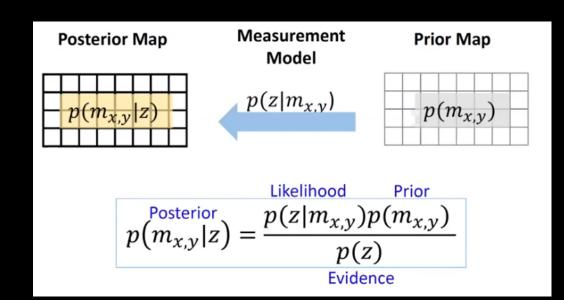
#### Given all we have learned...

- Markov localization in a grid
  - Localization: Estimate your cell pose within the map
  - Mapping: Estimate if cells are occupied or not
    - Every grid cell is a random variable
  - SLAM: Estimate pose and if cells are occupied or not
    - 100x100 grid cells (pretty small map)
    - Localization: (x,y,theta) = 100x100x100 states
    - Map: (x,y) = 10,000 states
    - SLAM: 100x100x100 x10,000 states
- Same issue for particle filters...

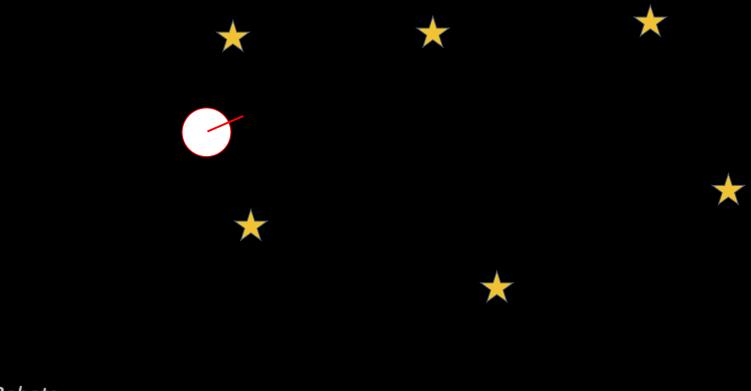


Balance parametric and non-parametric

#### approaches



- Robot pose/path and map are both unknown
  - Not independent...
  - Map and pose estimates are correlated





- Robot path and map are both unknown
- Map and pose estimates are correlated



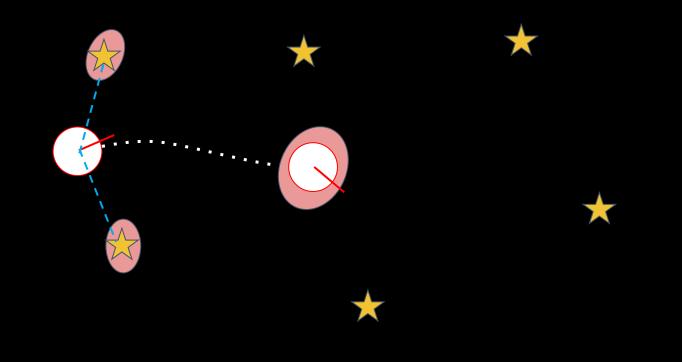


- Robot path and map are both unknown
- Map and pose estimates are correlated



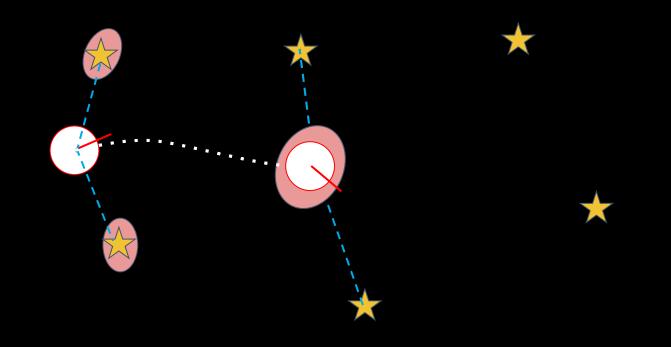


- Robot path and map are both unknown
- Map and pose estimates are correlated



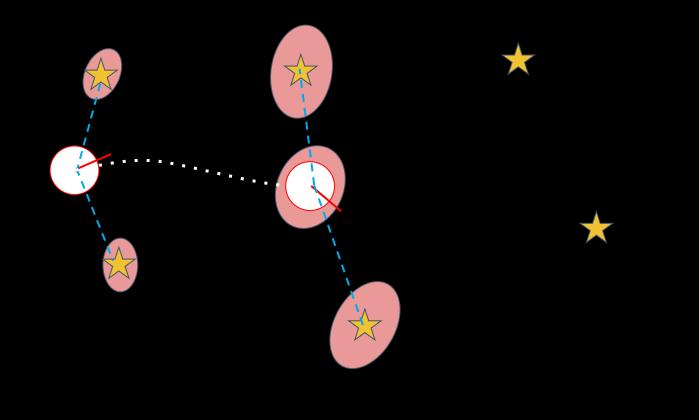


- Robot path and map are both unknown
- Map and pose estimates are correlated



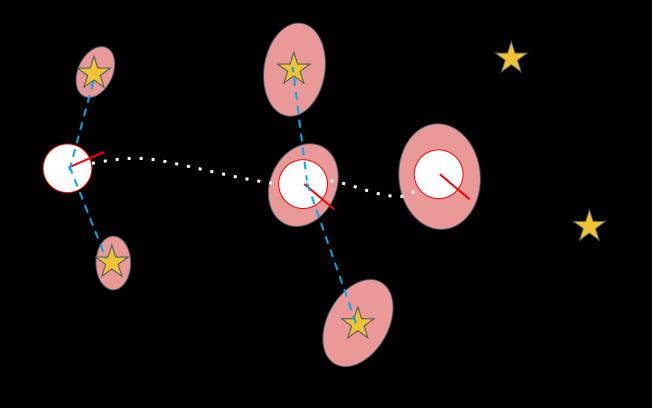


- Robot path and map are both unknown
- Map and pose estimates are correlated



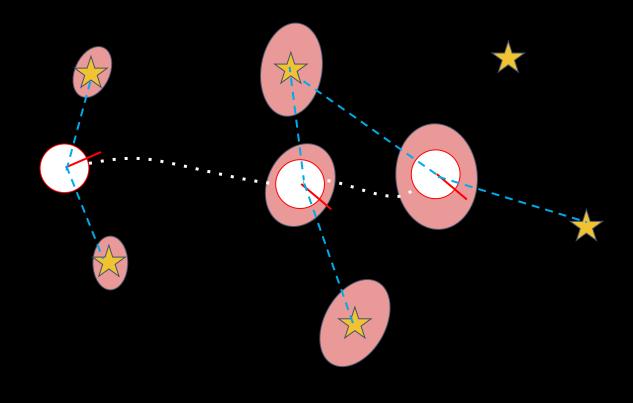


- Robot path and map are both unknown
- Map and pose estimates are correlated



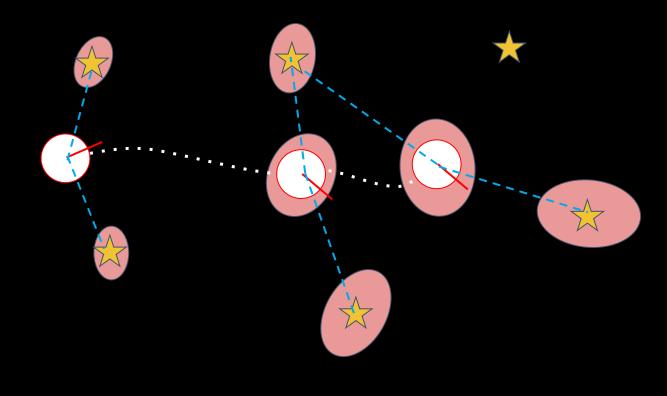


- Robot path and map are both unknown
- Map and pose estimates are correlated





- Robot path and map are both unknown
- Map and pose estimates are correlated
- Good data association is key





- The mapping between observations and the map is unknown
- Picking the wrong data association can cause map divergence







#### **Related Terms**

- State estimation
- Localization
- Mapping
- SLAM
- Navigation
- Motion planning

Given

Control inputs

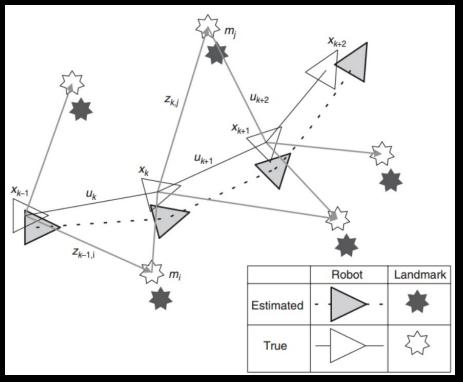
• 
$$U_{o:k} = \{u_1, u_2, \dots u_k\}$$

Relative observations

•  $Z = \{z_1, z_2, \dots z_n\}$ 

- Compute
  - Map of the environment
    m = {m<sub>1</sub>, m<sub>2</sub>, ... m<sub>n</sub>}
    Robot path (seq. of poses)
    X<sub>o:k</sub> = {x<sub>0</sub>, x<sub>1</sub>, ... x<sub>k</sub>}

- Error in pose
- Error in observation
- Error in mapping
- Errors accumulate

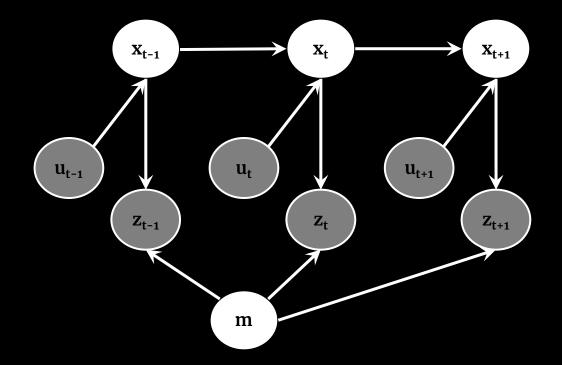


(Landmarks are considered motionless)



#### Simultaneous Localization and Mapping (graphical model)

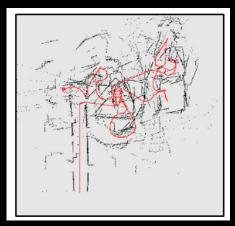
- Nodes are random variables
- Directed edges are variable dependencies
- Gray nodes
  - Observed or directly measured variables
- White nodes
  - Inferred latent variables

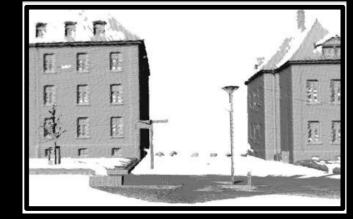




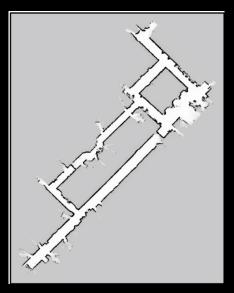
#### **SLAM Representations**

• Grid maps or scans



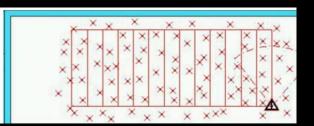


[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;...]

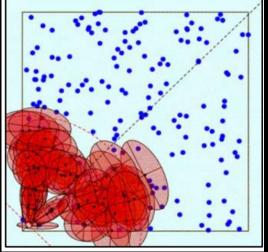


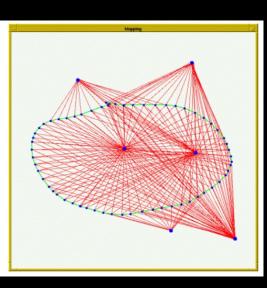
Landmark-based



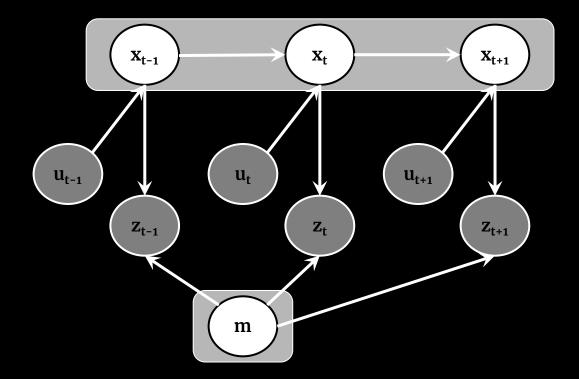


[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;...]





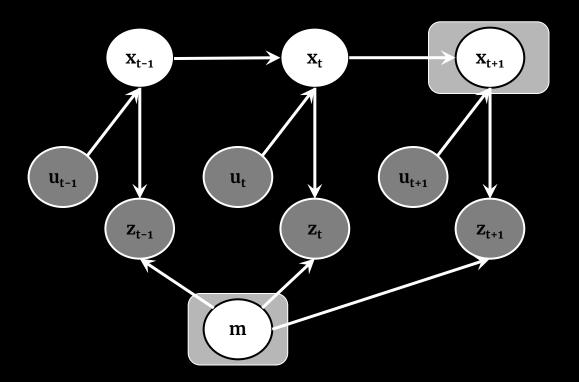
- Nodes are random variables
- Directed edges are variable dependencies
- Gray nodes
  - Observed or directly measured variables
- White nodes
  - Inferred latent variables
- Full SLAM
  - Compute a joint posterior belief over the whole path of the robot and the map
- Online SLAM



 $p(x_{1:t}, m | z_{1:t}, u_{1:t}, x_0)$ 



- Nodes are random variables
- Directed edges are variable dependencies
- Gray nodes
  - Observed or directly measured variables
- White nodes
  - Inferred latent variables
- Full SLAM
  - Compute a joint posterior over the whole path of the robot and the map
- Online SLAM
  - Compute a posterior over the current pose along with the map



 $p(x_t,m|z_{1:t},u_{1:t})$ 

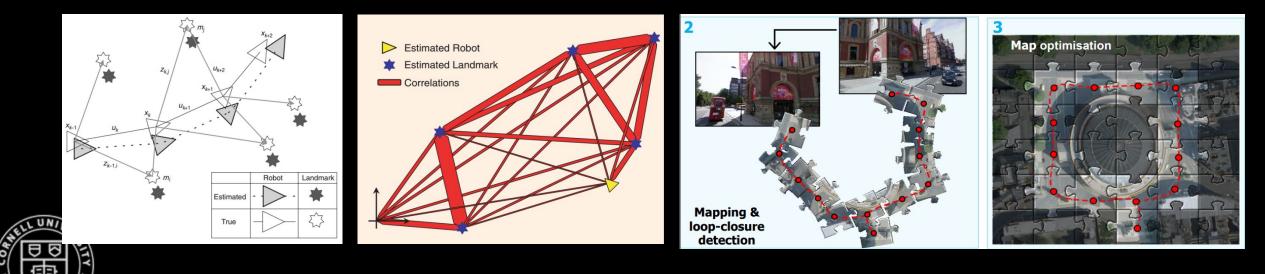


- Prediction (prediction step):
  - $p(x_t, m | z_{0:t}, u_{1:t} x_0) = \sum_{t=1} P(x_t | x_{t-1}, u_t) P(x_{t-1}, m | Z_{0:t-1}, U_{1:t}, x_0)$
- Correction (update step):
  - $p(x_t, m | z_{0:t-1}, u_{0:t}, x_0) = \eta P(z_t | x_t, m) P(x_t, m | Z_{0:t}, U_{1:t}, x_0)$
- We can solve the localization problem with the assumption that we know the map
  - $P(x_t|Z_{0:t}, U_{0:t}, m)$
- We can solve the mapping problem with the assumption that we know the location
  - $P(m|X_{0:t}, Z_{0:t}, U_{0:t})$

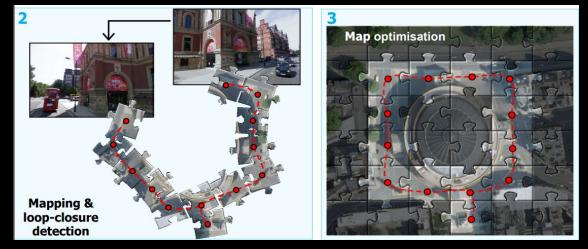


Fast Robots

- Robot observations of the relative landmark locations can be considered nearly independent, because the relative landmark locations are independent from the robot's coordinate frame
- Robot observations of the absolute landmark locations is less certain, because the absolute landmark location is strongly related to the robot's coordinate frame
- Because landmarks are correlated even unobserved landmarks can be updated, such that correlations are increased for every observation we make
- The accuracy of the relative map increases for more observations



- Why is it hard?
  - Map size
    - The larger the environment relative to the robot's perceptual range, the more difficult it is to acquire the map
  - Perceptual Ambiguity
    - The more different places look alike, the more difficult it is to establish correspondence between different locations traversed at different points in time
  - Cycles
    - Motion-cycles are particularly difficult to map





#### **SLAM Solutions**

- The trick is to find an appropriate representation for the observation and the motion problem
  - Graph SLAM → Global optimization: outputs the most likely map and trajectory
  - EKF SLAM
  - Fast SLAM
- $\rightarrow$  Probability distribution over landmarks and the most recent pose (online SLAM)



## ECE 4160/5160 MAE 4910/5910

# Fast Robots Graph SLAM

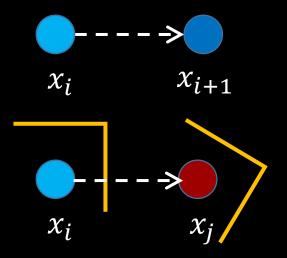


#### **Graph SLAM**

- Graph represents a set of objects where pairs of objects are connected by links encoding relations between them
- Create an edge if...

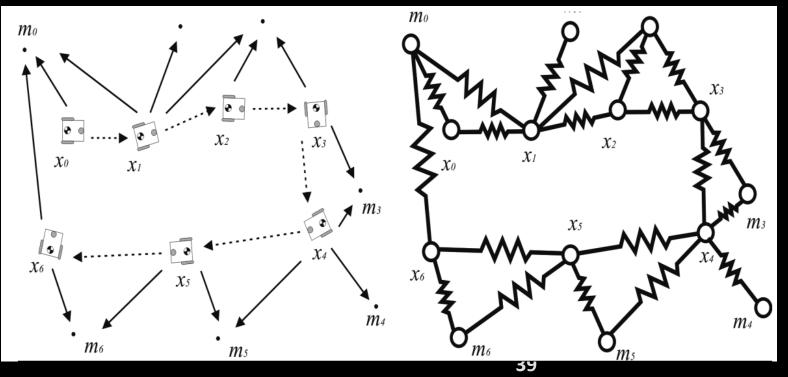
Fast Robots

- ...the robot moves from  $x_i$  to  $x_{i+1}$ 
  - (edge corresponds to odometry measurement)
- ...the robot observes the same part of the environment from  $x_i$  and from  $x_j$
- Edges represent constraints
- Nodes represent the state (poses and landmarks)
  - Given a state, we can compute predicted observations
  - Find a configuration of the nodes so that the real and predicted constraints are as similar as possible
  - Minimize the Least Square Error over all constraints



#### **Graph-Based SLAM**

- Treat constraints (generated by motions and observations) as elastic springs
- Minimize the energy in all the springs
- Any modern SLAM implementation has some version of this
  - Pro: Globally optimal
  - Con: BIG optimization problem, only one output
- Tricks
  - Combine poses over many time steps into single nodes to make the graph smaller
  - If you see the same landmark from several poses, you can get rid of the pose and add a stronger constraint between those landmarks





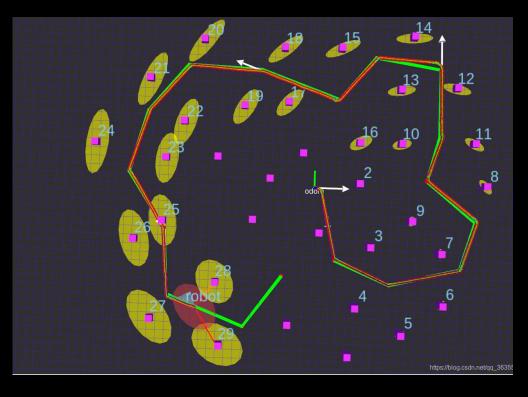
## ECE 4160/5160 MAE 4910/5910

# Fast Robots EKF SLAM



#### **EKF SLAM**

- Goal: Estimate  $p(x_k, m | u_{1:k}, z_{1:N})$
- Assume all noise is Gaussian
- Track a Gaussian belief of the current state and landmarks
- Apply the Kalman Filter...





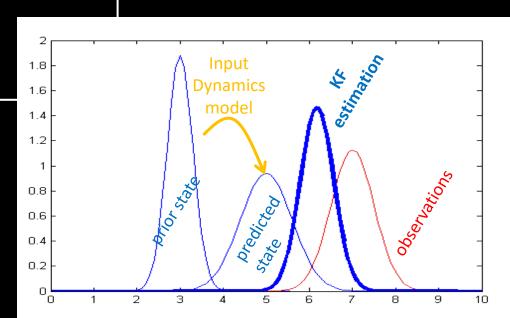
#### **Kalman Filter Implementation**

Kalman Filter ( $\mu$ (t-1),  $\Sigma$ (t-1), u(t), z(t))

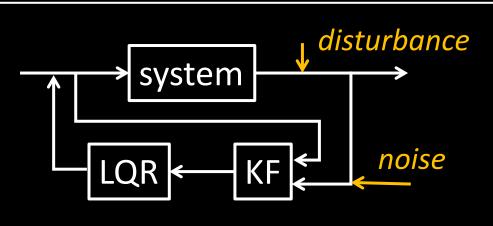
- 1.  $\mu_{p}(t) = A \mu(t-1) + B u(t)$
- 2.  $\Sigma_{p}(t) = A \Sigma(t-1) A^{T} + \Sigma_{u}$
- 3.  $K_{KF} = \Sigma_p(t) C^T (C \Sigma_p(t) C^T + \Sigma_z)^{-1}$
- 4.  $\mu(t) = \mu_p(t) + K_{KF} (z(t) C \mu_p(t))$
- 5.  $\Sigma(t) = (I K_{KF} C) \Sigma_{p}(t)$
- 6. Return  $\mu$ (t) and  $\Sigma$ (t)

prediction

update



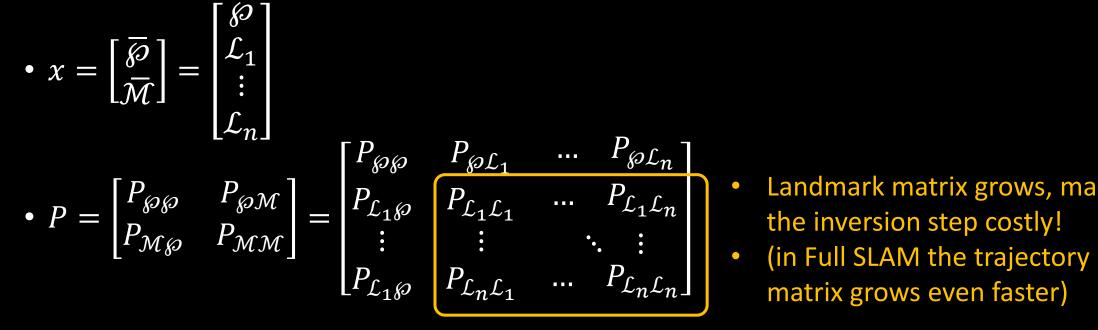
State estimate:  $\mu$ (t) State uncertainty:  $\Sigma$ (t) Process noise:  $\Sigma_u$ Kalman filter gain:  $K_{KF}$ Measurement noise:  $\Sigma_z$ 





#### EKF SLAM

- Goal: Estimate  $p(x_k, m | u_{1:k}, z_{1:N})$
- Assume all noise is Gaussian
- Track a Gaussian belief of the state and landmarks
- Linearize around every state and run the Kalman Filter

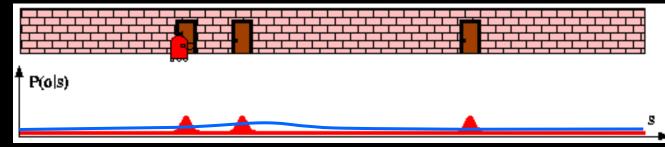


- Landmark matrix grows, making
- matrix grows even faster)



#### **EKF SLAM**

- Goal: Estimate  $p(x_k, m | u_{1:k}, z_{1:N})$
- Track a Gaussian belief of the state and landmarks
- Assume all noise is Gaussian
- Linearize around every state and run the Kalman Filter
- Pros
  - Super easy, well understood, runs online
  - Works well for low-uncertainty problems
- Cons
  - Works poorly for high-uncertainty problems
  - (States must be well-approximated by a Gaussian)





## ECE 4160/5160 MAE 4910/5910

# Fast SLAM



#### Fast SLAM

- Half sample-based solution
  - Particle filter
    - Every particle has its own version of the map with a given trajectory
- Half analytical solution
  - Landmark-based
    - Each pose and map of independent features is updated analytically through EKF
  - Grid-map based
    - Occupancy of each grid cell is estimated by Bayes Filter

GPS FastSLAM

4km traverse 100 particles <5m RMS position error Victoria Park dataset University of Sydney



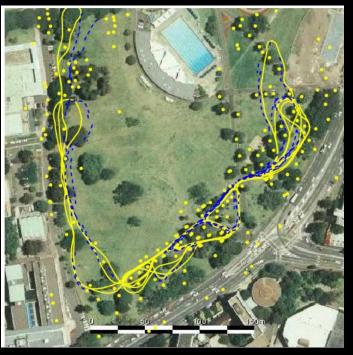


#### Fast SLAM

- Key idea: factorize the posterior
  - $p(x_{1:k}, m|z_{1:k}) = p(m|x_{1:k}, z_{1:k})p(x_{1:k}|z_{1:k})$
- $p(x_{1:k}|z_{1:k})$ : pose estimation is approximated by the Particle Filter
  - (can represent multiple hypotheses)
- $p(m|x_{1:k}, z_{1:k})$  : classic mapping problem, appr. using EKF
  - (efficient at representing belief in high dimensions)
- Outcome is a Marginalized Particle Filter (MPF)
  - Each particle is a pose trajectory with an attached map corresponding to mean and covariance of each landmark

#### GPS FastSLAM

4km traverse 100 particles <5m RMS position error *Victoria Park dataset* University of Sydney





#### Fast SLAM

- Distribution is estimated by a fixed number of particles
  - Each particle, k, contains an estimate of robot path and the mean and covariance of each of the n features
    - $P^{[k]}(x_t^{[k]}; \mu^{[k]}, \Sigma_1^{[k]}; \dots \mu^{[k]}, \Sigma_n^{[k]})$
- Step 1: Update particle trajectory (motion model)
- Step 2: Update particle landmarks with EKF (sensor model)
  - Linearize the observation model at  $(x_t^{[k]}, m)$
  - Only updated associated landmarks
- Step 3: Update weights based on  $p(z_t | x_t^{[k]}, m^{[k]})$
- Step 4: Resample distribution

#### m<sup>[k]</sup>) GPS FastSLAM 4km traverse 100 particles <5m RMS position error

*Victoria Park dataset* University of Sydney

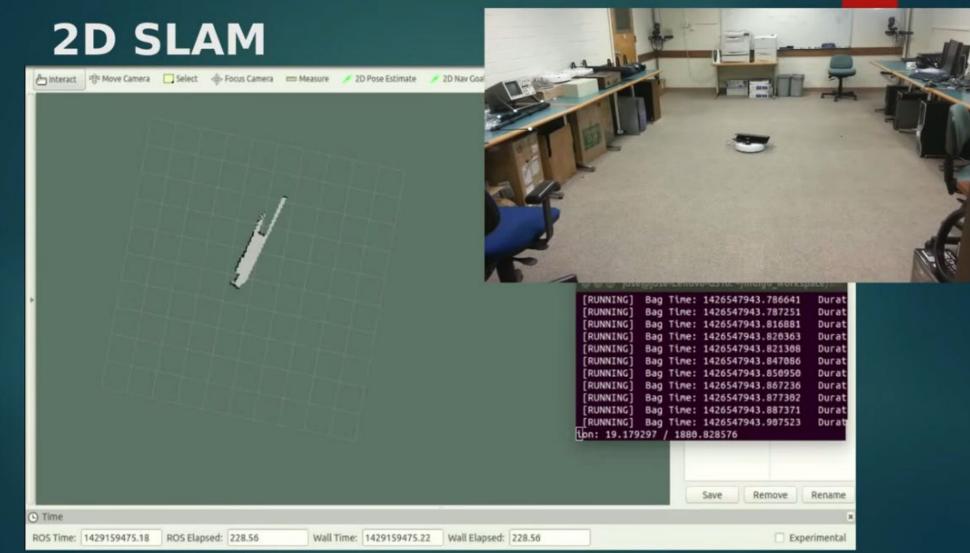




## ECE 4160/5160 MAE 4910/5910

# **Fast Robots** SLAM State of the Art

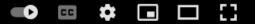






it can localize a car in urban environments





- Robotics
  - 3D cameras with depth maps and high frame rates and resolution
  - Dense 3D models of the world
  - Uses ROS and deep learning to recognize features
  - Come built-in in a range of robots
  - Inherent to e.g. the RealSense tracking cameras
- 3D scanning/reconstruction
- Virtual and augmented reality











#### Logistics

- Thursday Apr 20<sup>th</sup> Tuesday Apr 25<sup>th</sup>:
  - Ethics I and II
    - Justice, Utilitarian, and Totalitarian methods
    - Case studies
- Thursday Apr 27<sup>th</sup>:
  - Trivia
- Tuesday May 2<sup>nd</sup> Thursday May 4<sup>th</sup>:
  - ASML
  - Vecna Robotics
- Tuesday May 9<sup>th</sup>
  - Final Showcase 8.30-11am





