
ECE 4160/5160
MAE 4910/5910

Fast Robots
Monte Carlo Localization

Brief intro to SLAM

1

Prof. Kirstin Hagelskjær Petersen
kirstin@cornell.edu



ECE 4160/5160
MAE 4910/5910

Lab 10

2

Prof. Kirstin Hagelskjær Petersen
kirstin@cornell.edu



• https://cei-lab.github.io/FastRobots-2023/Lab10.html
• Pass/Fail
• To dos

• Read the full lab and the notebook (before you show up to lab!)
• Perform Grid localization for the sample trajectory
• Video demo
• Linda Li’s example from 2022: https://lyl24.github.io/lyl24-ece4960/lab11
• Discuss…

• Control
• Motion model and the prediction step
• Sensor model and the update step
• Choosing parameters, what effect do the parameters have
• Ways to mitigate the computational load
• Evaluate how well the Bayes filter works 
• How well will it work for your robot

Lab 10 – Localization in Simulation
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https://cei-lab.github.io/FastRobots-2023/Lab10.html
https://lyl24.github.io/lyl24-ece4960/lab11
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Grid-Based Localization
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(Prediction step)

(Update step)

1. 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁_𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡−1 ,𝑢𝑢𝑡𝑡 , 𝑧𝑧𝑡𝑡 :

2. for all 𝑥𝑥𝑡𝑡 do

3. 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = ∑𝑥𝑥𝑡𝑡−1 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑢𝑢𝑡𝑡 , 𝑥𝑥𝑡𝑡−1) 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡−1

4. 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = 𝜂𝜂 𝑝𝑝(𝑧𝑧𝑡𝑡|𝑥𝑥𝑡𝑡) 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡
5. endfor

6. return 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡

• Simple
• …but is computationally expensive for large 

workspaces



• Non-parametric approach based on Particle Filters
• Model the distribution by samples

• Prediction step
• Draw from the samples
• (Move forward based on motion model)

• Update step
• Weigh samples by their importance
• (Sensor model)

• Resample based on their weight
• The more samples we use, the better the 

estimate!

Monte Carlo Localization
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• Non-parametric approach based on Particle Filters
• Model the distribution by samples

Monte Carlo Localization
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1. 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁_𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡−1 ,𝑢𝑢𝑡𝑡 , 𝑧𝑧𝑡𝑡 :

2. for all 𝑥𝑥𝑡𝑡 do

3. 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = ∑𝑥𝑥𝑡𝑡−1 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑢𝑢𝑡𝑡 , 𝑥𝑥𝑡𝑡−1) 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡−1

4. 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡 = 𝜂𝜂 𝑝𝑝(𝑧𝑧𝑡𝑡|𝑥𝑥𝑡𝑡) 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡
5. endfor

6. return 𝑏𝑏𝑏𝑏𝑏𝑏 𝑥𝑥𝑡𝑡

Prior samples

Draw 𝑥𝑥𝑡𝑡𝑖𝑖 from 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑢𝑢𝑡𝑡 , 𝑥𝑥𝑡𝑡−1𝑖𝑖 )

Importance factor for 𝑥𝑥𝑡𝑡𝑖𝑖: 𝑤𝑤𝑡𝑡𝑖𝑖 𝛼𝛼 𝑝𝑝 𝑧𝑧𝑡𝑡 𝑥𝑥𝑡𝑡



• How do you obtain samples from an arbitrary 
distribution?

• Closed form solution for a uniform distribution

• Closed form solution for Gaussian distribution

Monte Carlo Localization
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• How do you obtain samples from an arbitrary 
distribution?

• Closed form solution for a uniform distribution

• Closed form solution for Gaussian distribution

• Use a proposal distribution to generate samples 
from the target distribution

• Account for differences using a weight 

• w = target/proposal

Monte Carlo Localization
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• Each particle, j, is a pose hypothesis

• Proposal distribution from the motion model
𝑥𝑥𝑡𝑡

[𝑗𝑗]~𝑝𝑝(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1,𝑢𝑢𝑡𝑡)
• Correction via the observation model

𝑤𝑤𝑡𝑡
[𝑗𝑗] = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥𝑡𝑡

𝑗𝑗 )

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑥𝑥𝑡𝑡
𝑗𝑗 = 𝑝𝑝(𝑧𝑧𝑡𝑡|𝑥𝑥𝑡𝑡)

• Resample

• Draw sample I with probability 𝑤𝑤𝑡𝑡
[𝑗𝑗] and 

repeat J times

Monte Carlo Localization
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https://www.cs.uml.edu/~holly/teaching/4510
and5490/fall2018/Lecture-Particle-Filters.pdf

https://www.cs.uml.edu/%7Eholly/teaching/4510and5490/fall2018/Lecture-Particle-Filters.pdf
https://www.cs.uml.edu/%7Eholly/teaching/4510and5490/fall2018/Lecture-Particle-Filters.pdf


Monte Carlo Localization
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https://www.cs.uml.edu/~holly/teaching/4510and5490/fall2018/Lecture-Particle-Filters.pdf

https://www.cs.uml.edu/%7Eholly/teaching/4510and5490/fall2018/Lecture-Particle-Filters.pdf


• How would you deal with a kidnapped robot situation?

• Randomly insert samples proportional to the average likelihood of the particles

Monte Carlo Localization

12

• Pros
• Works well for high-

uncertainty scenarios
• Much more efficient that 

the grid cells
• Cons

• Scales poorly with higher 
dimensional workspaces
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• State estimation

• Localization

• Mapping

• SLAM

• Navigation 

• Motion planning

Related Terms

14

→ Inferring a location given a map

→ Inferring a map given a location

→ Learning a map and locating the robot simultaneously



• State estimation

• Localization

• Mapping

• SLAM

• Navigation 

• Motion planning

Related Terms

15



Given all we have learned…
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• Transformation matrices
• Sensor and actuators (and probabilistic models)
• Controllers (PID, LQR)
• Observers (KF)
• Mapping
• Localization

• Bayes Filter and grid-localization
• Particle Filter

• Graph Search and Planning

→ Include the map into the state

→ Add grid-occupancy
→ Let particles represent both pose and map

…how would you implement SLAM?
(where could your estimate of the map fit in?)
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• Markov localization in a grid

• Localization: Estimate your cell pose within the map

• Mapping: Estimate if cells are occupied or not
• Every grid cell is a random variable

• SLAM: Estimate pose and if cells are occupied or not
• 100x100 grid cells (pretty small map)

• Localization: (x,y,theta) = 100x100x100 states

• Map: (x,y) = 10,000 states

• SLAM: 100x100x100 x10,000 states

• Same issue for particle filters…

• Balance parametric and non-parametric

approaches

Given all we have learned…



• Robot pose/path and map are both unknown

• Not independent…

• Map and pose estimates are correlated

Why is SLAM hard?
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Why is SLAM hard?
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• Robot path and map are both unknown

• Map and pose estimates are correlated



Why is SLAM hard?
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• Robot path and map are both unknown

• Map and pose estimates are correlated



Why is SLAM hard?
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• Robot path and map are both unknown

• Map and pose estimates are correlated



Why is SLAM hard?
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• Robot path and map are both unknown

• Map and pose estimates are correlated



Why is SLAM hard?
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• Robot path and map are both unknown

• Map and pose estimates are correlated



Why is SLAM hard?
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• Robot path and map are both unknown

• Map and pose estimates are correlated



Why is SLAM hard?
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• Robot path and map are both unknown

• Map and pose estimates are correlated



Why is SLAM hard?
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• Robot path and map are both unknown

• Map and pose estimates are correlated

• Good data association is key



Why is SLAM hard?
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• The mapping between observations and the map is unknown

• Picking the wrong data association can cause map divergence



• State estimation

• Localization

• Mapping

• SLAM

• Navigation 

• Motion planning

Related Terms

28

• Error in pose
• Error in observation
• Error in mapping
• Errors accumulate

• Given
• Control inputs

• 𝑈𝑈𝑜𝑜:𝑘𝑘 = {𝑢𝑢1,𝑢𝑢2, …𝑢𝑢𝑘𝑘}
• Relative observations

• 𝑍𝑍 = {𝑧𝑧1, 𝑧𝑧2, … 𝑧𝑧𝑛𝑛}
• Compute

• Map of the environment 
• 𝑚𝑚 = {𝑚𝑚1,𝑚𝑚2, …𝑚𝑚𝑛𝑛}

• Robot path (seq. of poses)
• 𝑋𝑋𝑜𝑜:𝑘𝑘 = {𝑥𝑥0, 𝑥𝑥1, … 𝑥𝑥𝑘𝑘}

(Landmarks are considered motionless)



● Nodes are random variables
● Directed edges are variable dependencies
● Gray nodes 

● Observed or directly measured variables
● White nodes

● Inferred latent variables

Simultaneous Localization and Mapping (graphical model)

29
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• Grid maps or scans

• Landmark-based

SLAM Representations

30

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; 
Konolige & Gutmann, 00; Thrun, 00; Arras, 99; Haehnel, 01;…] 

[Leonard et al., 98; 
Castelanos et al., 99: 
Dissanayake et al., 2001; 
Montemerlo et al., 2002;…]



● Nodes are random variables
● Directed edges are variable dependencies
● Gray nodes 

● Observed or directly measured variables
● White nodes

● Inferred latent variables

● Full SLAM
● Compute a joint posterior belief over the 

whole path of the robot and the map
● Online SLAM

Simultaneous Localization and Mapping

31

xt 
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m

𝑝𝑝(𝑥𝑥1:𝑡𝑡 ,𝑚𝑚|𝑧𝑧1:𝑡𝑡,𝑢𝑢1:𝑡𝑡, 𝑥𝑥0)



● Nodes are random variables
● Directed edges are variable dependencies
● Gray nodes 

● Observed or directly measured variables
● White nodes

● Inferred latent variables

● Full SLAM
● Compute a joint posterior over the whole 

path of the robot and the map
● Online SLAM

● Compute a posterior over the current pose 
along with the map

Simultaneous Localization and Mapping

32
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𝑝𝑝(𝑥𝑥𝑡𝑡 ,𝑚𝑚|𝑧𝑧1:𝑡𝑡,𝑢𝑢1:𝑡𝑡)



● Prediction (prediction step):
● 𝑝𝑝 𝑥𝑥𝑡𝑡 ,𝑚𝑚 𝑧𝑧0:𝑡𝑡 ,𝑢𝑢1:𝑡𝑡𝑥𝑥0 = ∑𝑡𝑡−1 𝑃𝑃 𝑥𝑥𝑡𝑡 𝑥𝑥𝑡𝑡−1,𝑢𝑢𝑡𝑡 𝑃𝑃 𝑥𝑥𝑡𝑡−1,𝑚𝑚 𝑍𝑍0:𝑡𝑡−1,𝑈𝑈1:𝑡𝑡 , 𝑥𝑥0

● Correction (update step):

● 𝑝𝑝 𝑥𝑥𝑡𝑡 ,𝑚𝑚 𝑧𝑧0:𝑡𝑡−1,𝑢𝑢0:𝑡𝑡 , 𝑥𝑥0 = 𝜂𝜂𝑃𝑃 𝑧𝑧𝑡𝑡 𝑥𝑥𝑡𝑡 ,𝑚𝑚 𝑃𝑃(𝑥𝑥𝑡𝑡,𝑚𝑚|𝑍𝑍0:𝑡𝑡 ,𝑈𝑈1:𝑡𝑡 , 𝑥𝑥0)

● We can solve the localization problem with the assumption that we know the map
● 𝑃𝑃(𝑥𝑥𝑡𝑡|𝑍𝑍0:𝑡𝑡 ,𝑈𝑈0:𝑡𝑡 ,𝑚𝑚)

● We can solve the mapping problem with the assumption that we know the location
● 𝑃𝑃(𝑚𝑚|𝑋𝑋0:𝑡𝑡 ,𝑍𝑍0:𝑡𝑡 ,𝑈𝑈0:𝑡𝑡)

Simultaneous Localization and Mapping

33



● Robot observations of the relative landmark locations can be considered nearly independent, 
because the relative landmark locations are independent from the robot’s coordinate frame

● Robot observations of the absolute landmark locations is less certain, because the absolute landmark 
location is strongly related to the robot’s coordinate frame

● Because landmarks are correlated even unobserved landmarks can be updated, such that 
correlations are increased for every observation we make

● The accuracy of the relative map increases for more observations

Simultaneous Localization and Mapping
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• Why is it hard?
• Map size

• The larger the environment relative to the robot’s perceptual range, the more difficult 
it is to acquire the map

Simultaneous Localization and Mapping

35

• Perceptual Ambiguity

• The more different places look alike, the 
more difficult it is to establish 
correspondence between different 
locations traversed at different points in 
time

• Cycles 
• Motion-cycles are particularly difficult 

to map



● The trick is to find an appropriate representation for the observation and the motion problem

● Graph SLAM
● EKF SLAM

● Fast SLAM

SLAM Solutions

36

→ Global optimization: outputs the most likely map and trajectory

→ Probability distribution over landmarks and the most recent 
pose (online SLAM)
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• Graph represents a set of objects where pairs of objects are 
connected by links encoding relations between them

• Create an edge if…
• …the robot moves from 𝑥𝑥𝑖𝑖 to 𝑥𝑥𝑖𝑖+1

• (edge corresponds to odometry measurement)
• …the robot observes the same part of the environment from 𝑥𝑥𝑖𝑖 and from 𝑥𝑥𝑗𝑗

• Edges represent constraints
• Nodes represent the state (poses and landmarks)

• Given a state, we can compute predicted observations
• Find a configuration of the nodes so that the real and predicted 

constraints are as similar as possible
• Minimize the Least Square Error over all constraints

Graph SLAM

38

𝑥𝑥𝑖𝑖+1𝑥𝑥𝑖𝑖

𝑥𝑥𝑖𝑖 𝑥𝑥𝑗𝑗



Graph-Based SLAM
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• Treat constraints (generated by motions and observations) as elastic springs
• Minimize the energy in all the springs
• Any modern SLAM implementation has some version of this

• Pro: Globally optimal
• Con: BIG optimization problem

• Tricks
• Combine poses over many 

time steps into single nodes to 
make the graph smaller 

• If you see the same landmark 
from several poses, you can 
get rid of the pose and add a 
stronger constraint between 
those landmarks

, only one output
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• Goal: Estimate 𝑝𝑝(𝑥𝑥𝑘𝑘 ,𝑚𝑚|𝑢𝑢1:𝑘𝑘 , 𝑧𝑧1:𝑁𝑁)
• Assume all noise is Gaussian
• Track a Gaussian belief of the current state and landmarks
• Apply the Kalman Filter…

EKF SLAM

41
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Kalman Filter ( μ(t-1), Σ(t-1), u(t), z(t) ) 
1. μp(t) = A μ(t-1) + B u(t)
2. Σp (t) = A Σ(t-1) AT + Σu

3. KKF = Σp(t) CT ( C Σp(t) CT + Σz)-1

4. μ(t)= μp(t) +  KKF ( z(t) - C μp(t) )
5. Σ(t) =( I – KKF C) Σp(t)
6. Return μ(t) and Σ(t)

Kalman Filter Implementation State estimate: μ(t)
State uncertainty: Σ(t)
Process noise: Σu
Kalman filter gain: KKF
Measurement noise: Σz

system

KFLQR

disturbance

noise

prediction

update

Input
Dynamics 

model



• Goal: Estimate 𝑝𝑝(𝑥𝑥𝑘𝑘 ,𝑚𝑚|𝑢𝑢1:𝑘𝑘 , 𝑧𝑧1:𝑁𝑁)
• Assume all noise is Gaussian
• Track a Gaussian belief of the state and landmarks
• Linearize around every state and run the Kalman Filter

• 𝑥𝑥 =
�℘
�ℳ

=

℘
ℒ1
⋮
ℒ𝑛𝑛

• 𝑃𝑃 =
𝑃𝑃℘℘ 𝑃𝑃℘ℳ
𝑃𝑃ℳ℘ 𝑃𝑃ℳℳ

=

𝑃𝑃℘℘ 𝑃𝑃℘ℒ1 … 𝑃𝑃℘ℒ𝑛𝑛
𝑃𝑃ℒ1℘ 𝑃𝑃ℒ1ℒ1 … 𝑃𝑃ℒ1ℒ𝑛𝑛
⋮

𝑃𝑃ℒ1℘
⋮

𝑃𝑃ℒ𝑛𝑛ℒ1
⋱ ⋮

… 𝑃𝑃ℒ𝑛𝑛ℒ𝑛𝑛

EKF SLAM

43

• Landmark matrix grows, making 
the inversion step costly!

• (in Full SLAM the trajectory 
matrix grows even faster)



• Goal: Estimate 𝑝𝑝(𝑥𝑥𝑘𝑘 ,𝑚𝑚|𝑢𝑢1:𝑘𝑘 , 𝑧𝑧1:𝑁𝑁)
• Track a Gaussian belief of the state and landmarks
• Assume all noise is Gaussian
• Linearize around every state and run the Kalman Filter

EKF SLAM

44

• Pros
• Super easy, well understood, runs 

online
• Works well for low-uncertainty 

problems 
• Cons

• Works poorly for high-uncertainty problems
• (States must be well-approximated by a Gaussian)
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• Half sample-based solution
• Particle filter

• Every particle has its own version of the map with a given 
trajectory

• Half analytical solution
• Landmark-based

• Each pose and map of independent features is updated 
analytically through EKF

• Grid-map based
• Occupancy of each grid cell is estimated by Bayes Filter

Fast SLAM

46

Victoria Park dataset
University of Sydney

GPS
FastSLAM
4km traverse
100 particles

<5m RMS position error



• Key idea: factorize the posterior
• 𝑝𝑝 𝑥𝑥1:𝑘𝑘 ,𝑚𝑚 𝑧𝑧1:𝑘𝑘 = 𝑝𝑝 𝑚𝑚 𝑥𝑥1:𝑘𝑘 , 𝑧𝑧1:𝑘𝑘 𝑝𝑝(𝑥𝑥1:𝑘𝑘|𝑧𝑧1:𝑘𝑘)

• 𝑝𝑝 𝑥𝑥1:𝑘𝑘 𝑧𝑧1:𝑘𝑘 : pose estimation is approximated by the Particle Filter
• (can represent multiple hypotheses)

Fast SLAM

47

Victoria Park dataset
University of Sydney

GPS
FastSLAM
4km traverse
100 particles

<5m RMS position error

• 𝑝𝑝 𝑚𝑚 𝑥𝑥1:𝑘𝑘 , 𝑧𝑧1:𝑘𝑘 : classic mapping problem, appr. using EKF
• (efficient at representing belief in high dimensions)

• Outcome is a Marginalized Particle Filter (MPF) 

• Each particle is a pose trajectory with an 
attached map corresponding to mean 
and covariance of each landmark



• Distribution is estimated by a fixed number of particles

• Each particle, k, contains an estimate of robot path and the mean and covariance of 
each of the n features 

• 𝑃𝑃 𝑘𝑘 (𝑥𝑥𝑡𝑡
𝑘𝑘 ;𝜇𝜇 𝑘𝑘 ,Σ1

𝑘𝑘 ; …𝜇𝜇 𝑘𝑘 ,Σ𝑛𝑛
𝑘𝑘 )

• Step 1: Update particle trajectory (motion model)

• Step 2: Update particle landmarks with EKF (sensor model)

• Linearize the observation model at (𝑥𝑥𝑡𝑡
𝑘𝑘 ,𝑚𝑚)

• Only updated associated landmarks

• Step 3: Update weights based on 𝑝𝑝(𝑧𝑧𝑡𝑡|𝑥𝑥𝑡𝑡
𝑘𝑘 ,𝑚𝑚 𝑘𝑘 )

• Step 4: Resample distribution

Fast SLAM
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Victoria Park dataset
University of Sydney

GPS
FastSLAM
4km traverse
100 particles

<5m RMS position error



ECE 4160/5160
MAE 4910/5910

Fast Robots
SLAM State of the Art

49

Prof. Kirstin Hagelskjær Petersen
kirstin@cornell.edu



State of the Art in SLAM
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https://www.youtube.com/watch?v=6pRAhfBMW8w

https://www.youtube.com/watch?v=6pRAhfBMW8w


State of the Art in SLAM
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https://www.youtube.com/watch?v=ufvPS5wJAx0

https://www.youtube.com/watch?v=ufvPS5wJAx0


• Robotics

• 3D cameras with depth maps and high frame rates and resolution 

• Dense 3D models of the world 

• Uses ROS and deep learning to recognize features

• Come built-in in a range of robots

• Inherent to e.g. the RealSense tracking cameras

• 3D scanning/reconstruction

• Virtual and augmented reality

State of the Art in SLAM
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State of the Art in SLAM
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https://www.youtube.com/watch?v=71eRxTc1DaU

https://www.youtube.com/watch?v=71eRxTc1DaU


• Thursday Apr 20th – Tuesday Apr 25th:
• Ethics I and II

• Justice, Utilitarian, and Totalitarian methods
• Case studies

• Thursday Apr 27th:
• Trivia

• Tuesday May 2nd – Thursday May 4th:
• ASML
• Vecna Robotics

• Tuesday May 9th

• Final Showcase 8.30-11am

Logistics

54


	Slide Number 1
	Slide Number 2
	Lab 10 – Localization in Simulation
	Slide Number 4
	Grid-Based Localization
	Monte Carlo Localization
	Monte Carlo Localization
	Monte Carlo Localization
	Monte Carlo Localization
	Monte Carlo Localization
	Monte Carlo Localization
	Monte Carlo Localization
	Slide Number 13
	Related Terms
	Related Terms
	Given all we have learned…
	Slide Number 17
	Why is SLAM hard?
	Why is SLAM hard?
	Why is SLAM hard?
	Why is SLAM hard?
	Why is SLAM hard?
	Why is SLAM hard?
	Why is SLAM hard?
	Why is SLAM hard?
	Why is SLAM hard?
	Why is SLAM hard?
	Related Terms
	Simultaneous Localization and Mapping (graphical model)
	SLAM Representations
	Simultaneous Localization and Mapping
	Simultaneous Localization and Mapping
	Simultaneous Localization and Mapping
	Simultaneous Localization and Mapping
	Simultaneous Localization and Mapping
	SLAM Solutions
	Slide Number 37
	Graph SLAM
	Graph-Based SLAM
	Slide Number 40
	EKF SLAM
	Slide Number 42
	EKF SLAM
	EKF SLAM
	Slide Number 45
	Fast SLAM
	Fast SLAM
	Fast SLAM
	Slide Number 49
	State of the Art in SLAM
	State of the Art in SLAM
	State of the Art in SLAM
	State of the Art in SLAM
	Logistics

