Intelligent Physical Systems

Week	Торіс	Week	Торіс
1	Intro, Arduino	9	Prototyping EE, LAB 4
2	IPS fundamentals, team work/time management, Website, LAB 1	10	Algorithms
3	Sensors and filters	11	Algorithms, <i>Milestone 3</i>
4	Embedded control, LAB 2	12	Monday is EE
5	Actuators and control, <i>Milestone 1</i>	13	a holiday!
6	FPGA, VGA, <i>Milestone 2</i>	14	
7	Prototyping ME, LAB 3	15	
8	Wireless communication	16	
ECE3400 Electrical and Computer Engineering			CO To O

https://theleadershipnetwork.com/article/future-manufacturing/industry-4-0

1700's

anno 1739 **Canard Digérateur**

ECE3400 CornellEngineering Electrical and Computer Engineering

1700's

ECE3400 CornellEngineering Electrical and Computer Engineering

(No Model.)

1800's

5 Sheets-Sheet 2 G. R. MOORE. WALKING AUTOMATON Patented June 23, 1891. No. 454,570.

Moore

NOTING PATCHS CO., PROTO-LITERS, MINISHOTON, D.

Intelligent Physical Systems

DullDangerousDirtyDistributed

Research robots

Medical robots

Home (assisted living) robots Auto

Autonomous cars

Entertainment robots

Space robotics

Aerial robots

Underwater robots

Industrial robots

Intelligent Physical Systems

- Machine: an apparatus consisting of several parts, that uses or applies mechanical power
- Automaton: a machine that performs a predetermined set of coded instructions
- Robot: ... no real definition

Sensors

Proprioceptive Sensors

- EncodersJoint torque sensors
- X Strain sensors
- 🔀 Compass
- 🔀 Accelerometer

X Battery level

Exteroceptive Sensors

🔀 Camera

- X Distance sensors
- **X** Light sensors
- 🔀 Microphone
- 🗙 Humidity
- ✗ Magnetometers

Challenges

- Sensitivity
- Sensitivity to other signals
- Repeatability
- Signal-to-noise ratio
- Signal processing

ECE3400 CornellEngineering Electrical and Computer Engineering

Mechanics

Chassis / power transfer

- Rigid links
- Hinges
- Bearings
- Pulleys
- Gears
- Nuts and bolts

Actuators

- Motors (DC, AC, brushed/brushless)
- Electromagnets
- Pneumatics/hydraulics
- Tendons/muscle wire
- Electro permanent magnets

Challenges

- Price
- Weight
- Durability
- Accuracy
- Backlash
- Power consumption

ECE3400 CornellEngineering Electrical and Computer Engineering

Controller

- Microprocessor
- Microcontroller
- Digital Signal Processor
- Programmable Logic
 Controller
- Field Programmable
 Gate Array

ECE3400 CornellEngineering Electrical and Computer Engineering

ASICs

- Driver electronics
- Power circuitry
- Filters
- ADC / DAC
- Memory
- Communication
- Shielding
- Batteries

Challenges

- Price
- Processing power
- Real-time OS
- Pin-outs
- Memory
- Power consumption

Control

ECE3400 CornellEngineering Electrical and Computer Engineering

Artificial Intelligence

ECE3400

- A device that can do something, that, if people did it, we would consider intelligent
- A device that perceives the environment and takes actions to maximize its chance of success at some goal
- A device that can learn the optimal strategy to achieve its goal

Source: Peter Pastor

r3411

r3d24

< DE1

SEDE

Supervised Learning

Sub-symbolic AI

- Scales to big data, robust to noise
- Great for perceptual problems

Traditional Artificial Intelligence

Symbolic AI • Intuitive to debug, explain, and control

Behavior-based Artificial Intelligence

- Reactive Intelligence
- Good for time-critical behaviors

Embodied Intelligence

Embodied Intelligence

BRAITENBURG VEHICLE (1984)

ECE3400 CornellEngineering Electrical and Computer Engineering

Online Communication

- Refer back to them when you build new systems
- Public repositories
- Refer back to them when you interview
- (and it's part of your grade!)

Online Communication

- Clear, concise text
 - Add team number, name, team members, class and year.
- Easy access to links
- Descriptive photos
 - Compress size!
- Descriptive videos
 - Phone cameras, Screen capture, overlay informative text/speech
- Code *snippets* (with comments)

Online Communication - Cultural differences

Hofstede's Cultural Dimensions Theory:

- Power Distance
- Individualism vs. collectivism
- Masculinity vs. Femininity
- Uncertainty Avoidance
- Long-term vs. Short term orientation

Online Communication - Cultural differences

Hofstede's Cultural Dimensions Theory:

- Power Distance
- Individualism vs. collectivism
- Masculinity vs. Femininity
- Uncertainty Avoidance
- Long-term vs. Short term orientation

<u>http://corporate.mcdonalds.com/mcd/country/map.html</u> Source: <u>http://blog.usabilla.com/designing-for-a-cross-cultural-user-experience-part1/</u>

Online Communication – Power Distance

Online Communication – Power Distance

Online Communication – Power Distance

China

Online Communication – Individualism vs Collectivism

Online Communication – Individualism vs Collectivism

Online Communication – Individualism vs Collectivism

Online Communication – Masculinity vs Femininity

Online Communication – Masculinity vs Femininity

Saudi Arabia

Online Communication – Masculinity vs Femininity

Online Communication – Uncertainty Avoidance

Online Communication – Uncertainty Avoidance

40

Online Communication – Uncertainty Avoidance

Online Communication – Long-term vs Short-term orientation

42

Online Communication – Long-term vs Short-term orientation

Hong Kong

Practical Information

- Friday 11.15-12.05am, mandatory team meetings!
 - Sit anywhere
 - Fill out team contract
 - Take meeting minutes
 - Make website with team number, name, team member names
 - Upload the contract and meeting minutes
 - Send a link to your TA's and Kirstin
 - Due Saturday @8am!
- Lab 1 will be graded one week after your lab session!

- Monday is a holiday $\textcircled{\odot}$

Go Build Robots!