Williams, Tim. EMC for product designers. Newnes, 2016.

Electromagnetic Interference (EMI)

the Clumpany, 2017

Electromagnetic Interference (EMI)

The Heusweiler Motorway Faraday Cage

Clothing, shoes, and optical stores...

Electronic equipment must be switched off during take-off and landing...

EMC Directive

- The ability of the system to operate without interfering with other systems
- The ability of the system to operate despite interference from other systems
- Under *typical* conditions (domestic, commercial, industrial)

VERIFICATION OF EMC COMPLIANCE

Verification No.	1	RK12E06032			
Applicant	:	ZHONGSHAN KINGRONG ELECTRONICS CO.,LTD			
Address	:	32, Cuihuju, YangguangMeijia, No.138 MinAn Rd South, Xiaolan, ZhongShan, Guangdong 528415 China			
Manufacturer	:	ZHONGSHAN KINGRONG ELECTRONICS CO.,LTD			
Address	:	32, Cuihuju, YangguangMeijia, No.138 MinAn Rd South, Xiaolan, ZhongShan, Guangdong 528415 China			
Product Name	:	Switching power supply(AC/DC adaptor)			
Model Number	:	KRE-XXXYYYZ "xxx"=030-480, the output voltage is: DC3.0-48.0V; "yyy"=001-450, the output current is: 0.01-4.5A; "Z" representing the input plug, 0-European plug, 1-BS plug, 2-Australian plug; 3-USA plug, 4-Japan plug, 5-China plug, 6-Korea plug, 7-South Africa plug, 8-Brazil plug, 9-Argentina plug			
Trade Mark	:	KRECO, BILLY			
Rating:	:	Input: AC100~240V ,50/60Hz, 1.0A max			
Test Standards	÷	EN 55022:2010+AC:2011 EN 61000-3-2:2006+A1:2009+A2:2009 EN 61000-3-3:2013 EN 55024:2010			

As shown in the

Limited

Technology Co.,

Û

Test Report Number(s): RK12E06032-00

This verification of EMC Compliance has been granted to the applicant based on the results of the tests, performed by laboratory of Shenzhen Raise Technology Co., Ltd. on the sample of the above-mentioned product in accordance with the provisions of the relevant specific standards and Directive 2014/30/EU. The CE mark as shown below can be used, under the responsibility of the manufacturer, after completion of an EC Declaration of Conformity and compliance with all relevant EC Directives.

Shenzhen Raise Technology Co., Ltd Address: Room 1208, West Building, Nanshan Digital Culture Industry Base, Nanshan District, Shenzhen, China Tel:+86-755-26445590 Fax:+86-755-86052680 Http://www.raise-sz.com E-mail:info@raise-sz.com

Sources of Interference

- Supply voltage interruptions: dips, surges, and fluctuations
- Transient over-voltages on supply, signal, and control lines.
- Radio-frequency fields, both pulsed (radar) and continuous, coupled directly onto equipment or onto its connected cables.
- Electrostatic discharge (ESD) from a charged object or person.
- Low frequency magnetic or electric fields.

Radio Spectrum

REPUICE

Primary

Disturbances on the Mains Supply

- An perfect power supply is not cost-effective!
- Voltage variations
- UK: ±10%
- US: National Electric Code (NEC) recommends ±3% in households
- Voltage fluctuations
- Voltage interruptions
- Waveform distortion
- Reactive impedances and harmonic currents
- Transients and surges

Disturbances on the Mains Supply

- Mains Signaling
 - Superimposed signals (3kHz-150kHz)
 - No extra wiring/aerial emission required
 - Installation can be as simple as plugging in the system components
 - No frequency variation from country to country or licensing issues
-Same frequency band as motors, power supplies, fluorescent

Electromagnetic Interference

Common Impedance Coupling

Mains Coupling

Mains equivalent circuit model

Magnetic Inductance

ECE3400 CornellEngineering Electrical and Computer Engineering

EQUIVALENT CIRCUIT (magnetic coupling)

V_N = -M*dI_L/dt M = mutual inductance [H] M depends on...

- Loop area
- Loop orientation
- Distance between loops
- Screening material

Electric Inductance

 R_{S} R_{S} V_{IN} R_{S} Z_{IN}

EQUIVALENT CIRCUIT (electric coupling)

 $V_N = C_C * dV_L/dt * Z_{in}//R_S$ C_C is the coupling capacitance $Z_{IN}//R_S$ is victim impedance to ground C_C depends on...

- Distance between conductors
- Their effective areas
- Screening material

Mutual Capacitance and Inductance

Mutual Capacitance and Inductance

- Electric field coupling increases with increasing Z_{IN}
- Electric coupling is more of a problem for high impedance circuits
- Magnetic field coupling decreases with increasing Z_{IN}
- Magnetic coupling is more of a problem for low-impedance circuits

Radiated Coupling

C

Wave impedance,

Near field; wave impedance determined by Maxwell's equations

Electric field predominates

Magnetic field predominates

Distance from source, normalized to $\lambda/2\pi$

Near-field impedance may

be anywhere in this region

Radiated Coupling

Differential mode

Differential mode

Common mode

(Shaded areas indicate part of circuit that couples with external fields)

ECE3400 Corr

Figure 5.10 Radiated coupling modes

Differential mode

Common mode

(Shaded areas indicate part of circuit that couples with external fields)

Antenna mode

Emissions

Figure 5.12 PCB radiated emissions

Electrostatic Discharge

Figure 5.23 The electrostatic discharge

Electrostatic Discharge

Static Voltage Generation at different Relative Humidi			
Generation Method	10-25% RH	60-90% RH	
Walking across a carpet	35,000Volts	1,500Volts	
Walking across vinyl tiles	12,000Volts	Air	
Worker at a workbench	6,000Volts	Human Skin Glass	•
Poly bag picked up from workbench	20,000Volts	Human Hair Wool Fur Paper	Increasingly Positive
Sitting on chair with urethane foam	18,000Volts		
		Cotton Wood Hard Rubber Acetate Rayon Polyester	Increasingly Negative
ECE3400 CornellEngineering Electrical and Computer Engineering		Polyurethane PVC (Vinyl) Teflon	*

Electrostatic Discharge

Figure 5.24 The cause of secondary discharge

"Ground is a lowimpedance path by which current can return to its source"

"Ground is a lowimpedance path by which current can return to its source"

ECE3400

Good Practices for EMI Immunity

- Control the flow of interference into and out of the equipment
 - Keep interference paths away from critical logic circuitry
- Add I/O filters / isolation
- Use high-noise threshold logic (e.g. 74HC)
- Avoid edge triggered inputs if possible
- Use a watchdog

System Partitioning

Twisted Wires!

Signal return currents A_{ret} and B_{ret} flow through their local twisted pair return path rather than through ground because this offers the lowest overall path inductance L_{ret}

Shielded wires

39

