
Algorithms 3: Implementation

Team Assessment!
Team member…
• …is always too busy to join meetings
• …doesn’t show up to class and expect us to catch them up
• …doesn’t communicate, and things get done twice/wrong

• Why?

• Lazy $#%*

•

• Busy…

• Prioritize what is more critical

Team member…
• …is always too busy to join meetings
• …doesn’t show up to class and expect us to fill catch them up
• …doesn’t communicate, and things get done twice/wrong

• Follow through with consequences!
• Talk, pizza jar, public shaming, talk to TAs and Profs
• Team Assessment
• What most of you did:

• 1: 22, 2: 20, 3: 18, 4: 19.5, 5: 20.5
• Zero sum game! (Team of 6 have 45 points)
• What you should do:

• 1: 25, 2: 25, 3: 5, 4: 20, 5: 25

Let’s do the math!

Team Assessment!

Each team assessment is 7.5pts
A team of 6 people have 45pts
0.5% * 45 = 0.225pts
200 points total in class
Consequence is: 0.1125%

Algorithms 3: Implementation

5

Implementation

Luther Lu, 2015

Simulation Theory

Bruce Land, 2015

U
pp

er
 b

ou
nd

Lo
w

er
 b

ou
nd

execution time

6

How Accurate Does the Simulation Have to Be?
• World representation

• Black tape grid
• Walls
• Treasure
• Start signal
• FPGA interface

• Robot representation
• Motion model (heading, differential steering, speed, etc.)
• Sensors
• Battery
• Memory
• Reliability

Can you make the
code portable?

7

World Representation

• The junctions are where your
robot/treasures can be!

• The walls are in between the
junctions

8

World Representation
Option 1:
• Twice as many cells as junctions
• Walls are just marked grid spaces
• Robot moves two steps every time
• Compute possible moves:

• [r.x r.y] = [7 9]
• Check wall [r.x-2 r.y]
• Check wall [r.x+2 r.y]
• Check wall [r.x r.y-2]
• Check wall [r.x r.y+2]R

WW

W

W

W

W

WW

W

W

W

W

W

T1

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

WWWWWWW

WWWWWW WW

W

W

(0,0)

9

World Representation
Option 2:
• One cell per junction
• Walls:

• cell.wall = [N E S W]
• Compute possible moves:

• cell.wall negated
• Mark both current and adjacent cell!

(0,0)

3

7

11

15

19181716

141312

8 9 10

6

2

54

0 1

10

World Representation
Option 3:
• Linear array
• Slightly faster computation

11

Robot Representation

• robot.pos = [x y]
• robot.heading = N/E/S/W
• Turning:

• North = [0 -1]
• East = [1 0]
• South = [0 1]
• West = [-1 0]
• Turn Sequence = [0 -1; 1 0; 0 1; -1 0]

• robot.visited
• robot.frontier = [r.pos r.heading]

(0,0)

12

How to make the most use of your simulation

• Generate random mazes!
• Run repeatedly (potentially w/o displays)

13

How to Explore?

• Start simple!
• Logistics (turn sequence)
• Determined walk

• In prioritized order:
• Go straight
• Turn CCW
• Turn CW

• No. of moves: ꝏ

14

How to Explore?

• Random Walk
• End condition?
• No. of moves: 221

15

How to Explore?

• Random Walk
• (Don’t go back)

• No. of moves: 126

16

How to Explore?

• Depth First Search
• (No cost)

• End condition?
• No. of “moves”: 19
• Next step would be to

implement BFS and do path
planning….

17

Embedded Programming

• Efficient storage vs. computation
• Bit masking!

• Walls:
• 1bit per direction (4 bits)
• All options into ___bits

• None, N, E, S, W, NE, NS,
NW, ES, EW, SW

• 3 Treasures
• 2 or 3 bits

• Visited: 1bit
• Frontier: ___bit

4
XXXX
walls

X
visitedtreasures

XXXX
frontier

XXXX
walls

X
visitedtreasures

~4 s

XXX

XXX

18

Embedded Programming

• Efficient storage vs. computation
• Bit masking!

• You could even include the
address…

• Entire maze in 40bytes

3

7

11

15

19181716

141312

8 9 10

6

2

54

0 1

XXXX
walls

X
visitedtreasures

XXXX
frontier

XXXX
walls

X
visitedtreasures

XXX

XXX

XXXX
walls

X
visitedtreasures

XXXX
frontier

XX
address
XXXX X

R

19

Embedded Programming

• Handy tricks
• Bitwise NOT operator:

• Cell = ~0b11000000 //negate
• Cell = 0b00111111

• Bitwise AND operator:
• Cell = 0b11000000 & 0b01111110 =
• Cell &= 0b00000001; //clear everything except

whatever is already in bit 0!

• Bitwise OR operator:
• Cell = 0b11000000 | 0b01111110 =
• Cell |= 0b00000001; //make sure bit 0 is on!

• Bitwise XOR operator
• Cell = 0b11000000 ^ 0b01111110 =
• LED ^= LED;

0b01000000

0b11111110

0b10111110

20

Embedded Programming

• Handy tricks
• Bit-shift

• 127 >> 1 = 0b01111111 >> 1 =
• 127 << 1 = 0b01111111 << 1 =
• TCCR0 |= (1 << CS00);

• NB: behavior depends on the datatype!
• unsigned char A = 0b11111000;
• A>>2 = 0b00111110;
• signed char A = 0b11111000;
• A>>2 = 0b11111110; //sign extension
• signed char A = 0b11111000;
• (unsigned char)A>>2 = 0b00111110;

0b00111111 = 63
0b11111110 = 254

Computation time (ATmega328, 16MHz):
• Subtraction/Addition: 3896 us
• Multiplication: 3896 us
• Division: 153236 us

21

Embedded Programming

• Handy tricks
• Priority?

• A &= ~(1 << 6);
• A = A & ~0b01000000;
• A = A & 0b10111111;
• Clear bit 6!

22

RAM

Global/static variables

Dynamically
allocated objects

Function calls
• reclaimable!

• recursive fcts

Pick local over
global/dynamically
allocated variables!

23

RAM
• Debugging strings

• Serial.print("Write something on the Serial Monitor for debugging");

• Move constant variables to flash (instead of RAM)
• Serial.print(F("Write something on the Serial Monitor for debugging"));

• #include <avr/pgmspace.h>

• const dataType variableName[] PROGMEM = {“xxx”}; // use this form

• String = pgm_read_word_near(variableName);

• Library Buffers

• System Buffers

24

25

Class website: https://cei-lab.github.io/ece3400/
Piazza: https://piazza.com/cornell/fall2017/ece3400/home

https://cei-lab.github.io/ece3400/
https://piazza.com/cornell/fall2017/ece3400/home

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25

