
Algorithms 3: Implementation



Team Assessment!
Team member…
• …is always too busy to join meetings
• …doesn’t show up to class and expect us to catch them up
• …doesn’t communicate, and things get done twice/wrong

• Why?

• Lazy $#%*

•

• Busy…

• Prioritize what is more critical



Team member…
• …is always too busy to join meetings
• …doesn’t show up to class and expect us to fill catch them up
• …doesn’t communicate, and things get done twice/wrong

• Follow through with consequences!
• Talk, pizza jar, public shaming, talk to TAs and Profs
• Team Assessment
• What most of you did: 

• 1: 22, 2: 20, 3: 18, 4: 19.5, 5: 20.5
• Zero sum game! (Team of 6 have 45 points)
• What you should do:

• 1: 25, 2: 25, 3: 5, 4: 20, 5: 25

Let’s do the math!

Team Assessment!

Each team assessment is 7.5pts
A team of 6 people have 45pts
0.5% * 45 = 0.225pts
200 points total in class
Consequence is: 0.1125%



Algorithms 3: Implementation
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Implementation

Luther Lu, 2015

Simulation Theory

Bruce Land, 2015
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How Accurate Does the Simulation Have to Be?
• World representation

• Black tape grid
• Walls
• Treasure
• Start signal
• FPGA interface

• Robot representation
• Motion model (heading, differential steering, speed, etc.)
• Sensors 
• Battery
• Memory
• Reliability

Can you make the 
code portable?
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World Representation

• The junctions are where your 
robot/treasures can be!

• The walls are in between the 
junctions
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World Representation
Option 1:
• Twice as many cells as junctions
• Walls are just marked grid spaces
• Robot moves two steps every time
• Compute possible moves:

• [r.x r.y] = [7 9]
• Check wall [r.x-2 r.y]
• Check wall [r.x+2 r.y]
• Check wall [r.x r.y-2]
• Check wall [r.x r.y+2]R
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World Representation
Option 2:
• One cell per junction
• Walls:

• cell.wall = [N E S W]
• Compute possible moves:

• cell.wall negated
• Mark both current and adjacent cell!

(0,0)
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World Representation
Option 3:
• Linear array
• Slightly faster computation
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Robot Representation

• robot.pos = [x y]
• robot.heading = N/E/S/W
• Turning:

• North = [0 -1]
• East = [1 0]
• South = [0 1]
• West = [-1 0]
• Turn Sequence = [0 -1; 1 0; 0 1; -1 0]

• robot.visited
• robot.frontier = [r.pos r.heading]

(0,0)
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How to make the most use of your simulation

• Generate random mazes!
• Run repeatedly (potentially w/o displays)
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How to Explore? 

• Start simple!
• Logistics (turn sequence)
• Determined walk

• In prioritized order:
• Go straight
• Turn CCW
• Turn CW

• No. of moves: ꝏ
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How to Explore? 

• Random Walk
• End condition?
• No. of moves: 221
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How to Explore? 

• Random Walk
• (Don’t go back)

• No. of moves: 126
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How to Explore? 

• Depth First Search
• (No cost)

• End condition?
• No. of “moves”: 19
• Next step would be to 

implement BFS and do path 
planning….
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Embedded Programming

• Efficient storage vs. computation
• Bit masking!

• Walls:
• 1bit per direction (4 bits)
• All options into ___bits

• None, N, E, S, W, NE, NS, 
NW, ES, EW, SW

• 3 Treasures
• 2 or 3 bits

• Visited: 1bit
• Frontier: ___bit

4
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XXXX
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XXXX
walls

X
visitedtreasures

~4      s

XXX

XXX
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Embedded Programming

• Efficient storage vs. computation
• Bit masking!

• You could even include the 
address…

• Entire maze in 40bytes
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Embedded Programming

• Handy tricks
• Bitwise NOT operator:

• Cell = ~0b11000000 //negate
• Cell = 0b00111111

• Bitwise AND operator:
• Cell = 0b11000000 & 0b01111110 = 
• Cell &= 0b00000001; //clear everything except 

whatever is already in bit 0!

• Bitwise OR operator:
• Cell = 0b11000000 | 0b01111110 = 
• Cell |= 0b00000001; //make sure bit 0 is on!

• Bitwise XOR operator
• Cell = 0b11000000 ^ 0b01111110 =
• LED ^= LED;

0b01000000

0b11111110

0b10111110
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Embedded Programming

• Handy tricks
• Bit-shift

• 127 >> 1 = 0b01111111 >> 1 = 
• 127 << 1 = 0b01111111 << 1 = 
• TCCR0 |= (1 << CS00);

• NB: behavior depends on the datatype!
• unsigned char A = 0b11111000;
• A>>2 = 0b00111110;
• signed char A = 0b11111000;
• A>>2 = 0b11111110; //sign extension
• signed char A = 0b11111000;
• (unsigned char)A>>2 = 0b00111110;

0b00111111 = 63
0b11111110 = 254

Computation time (ATmega328, 16MHz):
• Subtraction/Addition: 3896 us
• Multiplication: 3896 us
• Division: 153236 us
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Embedded Programming

• Handy tricks
• Priority?

• A &= ~(1 << 6);
• A = A & ~0b01000000;
• A = A & 0b10111111;
• Clear bit 6!
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RAM

Global/static variables

Dynamically 
allocated objects

Function calls
• reclaimable!

• recursive fcts

Pick local over 
global/dynamically 
allocated variables!
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RAM
• Debugging strings

• Serial.print("Write something on the Serial Monitor for debugging");

• Move constant variables to flash (instead of RAM)
• Serial.print(F("Write something on the Serial Monitor for debugging"));

• #include <avr/pgmspace.h>

• const dataType variableName[] PROGMEM = {“xxx”}; // use this form

• String = pgm_read_word_near(variableName);

• Library Buffers

• System Buffers
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Class website: https://cei-lab.github.io/ece3400/
Piazza: https://piazza.com/cornell/fall2017/ece3400/home

https://cei-lab.github.io/ece3400/
https://piazza.com/cornell/fall2017/ece3400/home
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