
IPS Debugging
and Evaluation

https://ajaywhiz.wordpress.com/2010/02/23/
software-development-life-cycle-emotions/

2

Specification and Evaluation

• Sensitivity of IR sensors
• Output vs. distance
• SNR
• Resistance to ambient light

• Sensitivity of microphone
• Output vs. distance

• Bandwidth of communication
• Battery life time

• (Under specific circumstance)
• Computation speed/memory

• Filters…
• Encoders…
• etc. The One-ders, 2017

3

Specification and Evaluation

• FFT
• What is the Q of your filter?

• Search
• How long does it take to find a path?

• Worst case and best case scenarios
• How does your implementation scale in time and

memory with the size of the maze?

• Speed/power of your servos
• Payload capability

4

Evaluation

• Straight line velocity
• Turn speed, turn radius
• Reliability of grid traversal (straight/turn)
• Battery life time

• Straight line test

Standards
• Help you compare different systems
• …not that common in robotics

• To help; be thorough in your evaluation, report negative
results and reliability tests

Mean
Max/Min

5

How to convey the information?

• Tables (max/min values)
• Graphs

• with error bars
• Color maps

• NB: BW printers/color blind people

Standard deviation
Raw

6

Debugging Intelligent Physical Systems
Debugging is more complex than ever!

• Electronics

• Software

• Mechanics

• Multiple connected devices

• Simulation

Worst bugs are intermittent

→ Apply a methodical and documented search

7

Debugging Intelligent Physical Systems
MARK I Computer, Harvard, by Howard Aiken in 1944

8

Debugging Intelligent Physical Systems
Admiral Grace Hopper, 1906-1992MARK I Computer, Harvard, by Howard Aiken in 1944

9

Debugging Intelligent Physical Systems
Admiral Grace Hopper, 1906-1992MARK I Computer, Harvard, by Howard Aiken in 1944

Thomas Jefferson 1878:

“'Bugs' -- as such little faults
and difficulties are called --

show themselves after
months of intense watching,
study and labor are requisite
before commercial success

or failure is certainly
reached.”

Developing Your System

• Bottom-up development

• Unit testing

• Faster initial progress

• Top-down development

• Implement every thing to begin with

• Add dummy functions as placeholders

• Leads to more modular products

Alternatively, use in-circuit emulators
Software Debugging
• Compilers

• Checks for low level errors such as
• Syntax or type errors
• Exception handling

• Software debuggers
• Allows you to monitor the execution of a program
• Stop it
• Restart it
• Set break points
• Change values in memory
• AVR Studio / Visual Micro debugger

for the Atmel processers

12

Browsing for help online

• Always test circuit beforehand!
• Add test points
• Make circuit dividers

• Visual inspection
• Go/Nogo
• Test jig
• Automated Test Equipment

14

PCB Debugging

time, price, thoroughness

• Typically related to friction or jamming
• Broken teeth/dirt in gears
• Broken axels
• Fallen/obscured sensors
• Broken wires
Errors leads to symptoms:
• Bad sensor values
• Slow/biased movement
• Jamming may cause power surges and reset conditions
• Make a test jig for the robot

15

Mechanical Bugs?

Map Your System , then describe your interfaces!

PWM [0-5V]
f [20Hz]
DC [1.1-1.9ms]

Make a System Test

PWM [0-5V]
f [20Hz]
DC [1.1-1.9ms]

Make a setup (code, environment)
that generates a predictable
output everywhere!

Debugging IPS
• STEP 1: Reproduce the symptom!

• STEP 2: Hunt down the bug

• Brute force debugging

• Problem simplification

• Backtracking (start from problem)

• Tracing or print debugging

• Binary Search

• Scientific Method: Form hypothesis and test it

• Bug clustering

Debugging IPS
Then solve the problem

• In most cases the fix is simple

• Some times it is hard!

• The error may be remote in space or time

• Many errors may be present and correlated

• Patch solutions?

• Fixing one error may introduce new errors

Debugging IPS
Or try to prevent the bug in the first place

• Clean code, electronics, wiring, mechanics

• Incremental development: Compile/test often!

• Instrument program to log information

• Instrument program with assertions

• Always add else-statements

• Always add default to switch case statements

• Add value checkers

• Add visible feedback (LEDs?)

• It appears hopeless, but there is a logical structure in there. The
evidence may be obscure, but consistent in pointing to the guilty
element.

• Don't panic -- be methodical. Often the TA is able to do this, and they
don't know more about your code than you do.

• Discuss it with a team mate
• Sleep on it!

21

Mindset

• Intuition and hunches are great— you just have to test them out. When a hunch and a
fact collide, the fact wins.

• Don't look for complex explanations. Even the simplest omission or typo can lead to very
weird behavior.

• The clue to what is wrong is in the values of your variables.
• Be systematic and persistent. The bug is not moving around in your system, trying to

trick or evade you. It is just sitting in one place, doing the wrong thing in the same way
every time.

• If your code was working a minute ago, but now it doesn't— what was the last thing you
changed?

• Do not change your code haphazardly trying to track down a bug.
• Fix bugs immediately (even if they’re not the original bug you were looking for, errors

may be correlated).

22

Mindset

3-bit Signal Voltage value

000 0V

001 1/7 V

010 2/7 V

011 3/7 V

100 4/7 V

101 5/7 V

110 6/7 V

111 1 V

23

Calculating the Resistor Values of the DAC *Courtesy of Team 9-10

24

E Series Resistor Values

E3
• 3 values in each decade: 1Ω, 2.2Ω, 4.7Ω
• Tolerance: ±40%
E6
• 6 values in each decade: 1Ω, 1.5Ω, 2.2Ω, 3.3Ω, 4.7Ω, 6.8Ω
• Tolerance: ±20%
E12
• 12 values in each decade:
1Ω, 1.2Ω, 1.5Ω, 1.8Ω, 2.2Ω, 2.7Ω, 3.3Ω, 3.9Ω, 4.7Ω, 5.6Ω, 6.8Ω, 8.2Ω
• Tolerance: ±10%
etc…

R1 = 270Ω
R2 = 561Ω

R3 = 1200Ω

25

E Series Resistor Values

• Equally spaced out on a logarithmic scale
• Current tolerances are typically 5%, 1-2%

E-12 Series 101/12 = 1.2

R1 = 270Ω
R2 = 561Ω

R3 = 1200Ω

3-bit Signal Voltage value

000 0V

001 1/7 V

010 2/7 V

011 3/7 V

100 4/7 V

101 5/7 V

110 6/7 V

111 1 V

Calculating the Resistor Values of the DAC R1 = 270Ω
R2 = 561Ω

R3 = 1200Ω

0X1 → 3.3V ∙ [50Ω||R1] / [R3 + (50Ω||R1)]
= 3.3V ∙ 42.2Ω /(1200Ω+42.2Ω) = 0.11V

3-bit Signal Voltage value

000 0V

001 0.1428 V

010 0.2857 V

011 0.4285 V

100 0.5714 V

101 0.7142 V

110 0.8571 V

111 1 V

Tristate pins:

• Set pins to inputs!

X01 → 3.3V ∙ [50Ω||R2] / [R3 + (50Ω||R2)]
= 3.3V ∙ 46.0Ω /(1200Ω+46.0Ω) = 0.12V

XX1 → 3.3V ∙ 50Ω / [R3 + 50Ω]
= 3.3V ∙ 50Ω /(1200Ω+50Ω) = 0.132V

Logistics:

• Next week

• Ethics!

• Lectures and Homework

28

Class website: https://cei-lab.github.io/ece3400/
Piazza: https://piazza.com/cornell/fall2017/ece3400/home

https://cei-lab.github.io/ece3400/
https://piazza.com/cornell/fall2017/ece3400/home

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28

