
1

Purple Cobras

7Ups

ScoobySnacks

Black Hat Cats

Team 14

Yaaas

Team K



2

Algorithms and Path Planning

ECE 3400: 
Intelligent Physical Systems

Topics
• Simple Search
• Depth First Search
• Breadth First Search
• Dijkstra’s Search
• Greedy Best First Search
• A* Search
• Adversarial Search

Classes of interest
• ECE2400: Computer Systems Programming
• CS4700: Foundations of Artificial Intelligence
• CS4701: Practicum of Artificial Intelligence
• CS3758/MAE4180: Autonomous Mobile Robots
• ECON4020: Game Theory
• ORIE 4350: Game Theory



3

Can you explore the 
entire maze?
• 15s avg. for 6 squares
• 3.4min for 81 squares
• Unlikely, but possible.
Is there a reason to 
stop exploring?



4

Grading – last two milestones



Search and Path Planning
• How do I get to my goal?
• No simple answers…

• Can you see your goal?
• Do you have a map?
• Are obstacles unknown, or dynamic?
• Does it matter how fast you get there?
• Does it matter how smooth the path is?
• How much computing power do you have?
• How precise is your motion control?



Search and Path Planning
• What is the simplest possible search?

• Random motion (no intelligence)
• Reactive path planning (purely local)

• Visual homing
• Wall following, etc…

• Bug-based Algorithms (mostly local)
• Sense direction and distance to the goal
• No knowledge of map and obstacles



Bug 0
Sensor Assumptions:
• Direction to the goal
• Detect walls

Algorithm:
1. Go towards goal
2. Follow obstacles until you can go 

towards goal again
3. Loop



Bug 0
Sensor Assumptions:
• Direction to the goal
• Detect walls

Algorithm:
1. Go towards goal
2. Follow obstacles until you can go 

towards goal again
3. Loop

Example of what 
would fool Bug 0?



Bug 0
Sensor Assumptions:
• Direction to the goal
• Detect walls

Algorithm:
1. Go towards goal
2. Follow obstacles until you can go 

towards goal again
3. Loop



Bug 1
Sensor Assumptions:
• Direction to the goal
• Detect walls
• Odometry

Algorithm:
1. Go towards goal
2. Follow obstacles and remember how 

close you got to the goal
3. Return to the closest point, and loop



Bug 1
Sensor Assumptions:
• Direction to the goal
• Detect walls
• Odometry

Algorithm:
1. Go towards goal
2. Follow obstacles and remember how 

close you got to the goal
3. Return to the closest point, and loop What are the pros and 

cons of this algorithm?



Bug 1 - formally
Sensor Assumptions:
• Direction to the goal
• Detect walls
• Odometry

• Lower bound traversal?
• d

• Upper bound traversal?
• d + 1.5 ∙ Sum(P)

What are the pros and 
cons of this algorithm?

d
Pn



Bug 2
Sensor Assumptions:
• Direction to the goal
• Detect walls
• Odometry
• Original vector to the goal

Algorithm:
1. Go towards goal on the vector
2. Follow obstacles until you are back on 

the vector (and closer to the obstacle)
3. Loop



Bug 2
Sensor Assumptions:
• Direction to the goal
• Detect walls
• Odometry
• Original vector to the goal

Algorithm:
1. Go towards goal on the vector
2. Follow obstacles until you are back 

on the vector
3. Loop



Howie Choset 16-735Bug 2
Sensor Assumptions:
• Direction to the goal
• Detect walls
• Odometry
• Original vector to the goal

Algorithm:
1. Go towards goal on the vector
2. Follow obstacles until you are back on 

the vector (and doing something new)
3. Loop What is faster, right-

or left wall following?



S

Algorithms and Search
• What is the simplest thing to do?

• Brute force search
• How many grid traversals will it take?

• First establish a search order
• Advance x first, then increment y and 

decrease x, etc.

1 2 3

4567

8 9 11

13

Find a treasure

10

12



S

Algorithms and Search

1

2

3

4 5 6 7

8

9

10

1112

13

14

15

Find a treasure
• What is the simplest thing to do?

• Brute force search
• Other methods?

• Depth First Search (DFS)

Search order: N, E, S, W



Algorithms and Search
• What is the simplest thing to do?

• Brute force search
• Other methods?

• Depth First Search (DFS)
• Breadth First Search (BFS)

S

Find a treasure

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Search order: N, E, S, W



S

Find a treasure

5

Algorithms and Search
• Depth First Search (DFS)

y

x

(0,0)
(0,1) (1,0)

(0,2) (1,1)

(0,3) (1,2)

(0,4) (1,3)

and so on…

1

2

3

4

(1,4)

Search order: N, E, S, W



S

Find a treasure
Algorithms and Search

• Depth First Search (DFS)

y

x

(0,0)
(0,1) (1,0)

(0,2) (1,1)

(0,3)

(0,4)

and so on…

1

2

3

4

Search order: N, E, S, W

(1,2) (2,1)

Why am I not also 
adding (1,0)?
• Keep track of what 

is already on the 
frontier



S

Find a treasure

6

7

• Depth First Search (DFS)
• Breadth First Search (BFS)

y

x

(0,0)
(0,1) (1,0)

(0,2) (1,1) (2,0)

(0,3) (3,1)

and so on…

1

2

3

4

5

Algorithms and Search Search order: N, E, S, W



S

Find a treasure
• Depth First Search (DFS)
• Breadth First Search (BFS)
• Common graph structure

• For every node, n
• you have a set of actions, a
• that moves you to a new node, n’

y

x

n
a1

a2

a3
n’1

n’2

n’3

Algorithms and Search



Sy

x

n = state(init)
frontier.append(n)
while(frontier not empty)

n = pull state from frontier
append n to visited
if n = goal, return solution
for all actions in n

n’ = a(n)
if n’ not visited

append n’ to frontier

visited

…

frontier

…

General Search Algorithm

X*Y
How much space 
to allocate to 
visited?



visited

…

X*Y

frontier
• Depth First Search (DFS)

Sy

x

n = state(init)
frontier.append(n)
while(frontier not empty)

n = pull state from frontier
append n to visited
if n = goal, return solution
for all actions in n

n’ = a(n)
if n’ not visited

append n’ to frontier

General Search Algorithm

0,0

0,1

0,21,1

1,0

1,2

0,31,1

1,0

1,2

0,4

1,3

Type of Buffer?
Last-In First-Out (LIFO) Buffer

etc…



(0,0)

(0,1) (1,0)

(0,2) (1,1)

(0,3) (1,2)

(0,4) (1,3)

and so on…

Memory grows 
linearly with 
the depth of 
the graph

How much memory to allocate 
for the frontier buffer?

• Depth First Search (DFS)

General Search Algorithm

visited

…

X*Y

frontier

Sy

x

0,0

0,1

0,2

0,3

1,0

0,4

Type of Buffer?
Last-In First-Out (LIFO) Buffer

1,1

1,2

1,3



visited

…

0,0

frontier

General Search Algorithm
• Depth First Search (DFS)
• Breadth First Search (BFS)

Sy

x

n = state(init)
frontier.append(n)
while(frontier not empty)

n = pull state from frontier
if n is goal, return solution
for all actions in n

n’ = a(n)
if n’ not visited

append n’ to visited
append n’ to frontier

0,1

1,0

0,2

1,1

0,1

1,0

2,0

0,3 Type of Buffer?
First-In First-Out (FIFO) Buffer

0,0

0,2



• Depth First Search (DFS)
• Breadth First Search (BFS)

Memory grows exponentially with the 
depth of the graph

General Search Algorithm

(0,0)
(0,1) (1,0)

(0,2) (1,1) (2,0)

(0,3) (3,1)

visited

…

frontier

Sy

x

1,1

0,1

1,0

2,0

0,3 Type of Buffer?
First-In First-Out (FIFO) Buffer

0,0

0,2

How much memory to allocate 
for the frontier buffer?



Maze Exploration
• What is the most efficient way to explore a maze with obstacles?

• Hint: Your robot takes time to move!
• Double hint: Your robot takes time to turn!

4 5 6 7

3 16 17 8

2 15 18 9

1 14 19 10

S 13 12 11DFS

13 14 18 19

6 12 15 17

3 7 11 16

1 4 8 10

S 2 5 9BFS
S



S

Maze Exploration with Depth First Search
• Can we be done already?

• What path is the robot going to take?
• What is the next frontier?

S

• How should the robot plan how to 
get there?

Procedure:
• Depth First exploration
• Breadth First Search to find the shortest 

path to the frontier
• (sequence of actions to get to the frontier)



Breadth First Search

R

G

(2,3)=robot

(2,2)

(1,4) (3,4)

(3,3) (1,3)(2,4)

(3,2) (1,2)(2,1)
(2,4)

(3,3)

(2,2)

(1,3)

(3,4)(1,4)

(3,2)

(2,1)

(1,2)

(0,3)
(0,3)

(0,4)

(3,1)

(3,1) (2,0)

(2,0)

(1,1)=goal

Data structure
• n.state
• n.parent

(0,4)

Search order: N, E, S, W

What is the shortest path 
to the goal?



Breadth First Search

R

G

(2,4)

(3,3)

(2,2)

(1,3)

(3,4)(1,4)

(3,2)

(2,1)

(1,2)

(0,3)

(0,4)

(3,1)

(2,0)

Data structure
• n.state
• n.parent

Does not include the 
cost to get there…

(2,3)

(2,2)

(1,4) (3,4)

(3,3) (1,3)(2,4)

(3,2) (1,2)(2,1) (0,3)

(3,1) (2,0) (1,1)(0,4)

Search order: N, E, S, W



Breadth First Search and Dijkstra’s Algorithm

• Dijkstra’s Algorithm: consider parent cost

R

G

(2,3)

(2,2)(3,3) (1,3)(2,4)
(2,4)

(3,3)

(2,2)

(1,3)

Data structure
• n.state
• n.parent
• n.cost
• n.action

Search order: N, E, S, W

2 1 2 3

What cost heuristic could 
we add?
• Go straight, cost 1
• Turn quadrant, cost 1

(3,4) 2 (3,2)2
(3,4)

(3,2)

(1,4)
(1,4)

2 2 (2,1)

(2,1)

(1,2)

(1,2)

2 1 2

(3,1)

(3,1) (2,0)

(2,0)

(1,1)2 1 2

…may save some computation!

Cost?

What node to expand next?



40

Class website: https://cei-lab.github.io/ece3400/
Piazza: https://piazza.com/cornell/fall2017/ece3400/home

https://cei-lab.github.io/ece3400/
https://piazza.com/cornell/fall2017/ece3400/home

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40



