ECE3400: Intelligent Physical Systems

Probability and Localization

Classes of Interest:

ECE 3100: Intro to Probability and Inference ECE 5412: Bayesian Estimation and Learning MAE 4180/5780, CS3758: Autonomous Mobile Robots
 \section*{ECE3400
 \section*{ECE3400

 Engineering}

 Engineering}

Reliability

- How well does your robot go straight?
- How well does your robot turn?
- How well does your wall sensor detect walls?
- ...Are you really sure it works perfectly?

ECE3400

Nothing's prefect!

Simultaneous Localization And Mapping

ECE3400

Reliability

- How well does the robot go straight?
- Describe your setup:
- Move straight between two junctions 50 times in a row
- Results:

- It went straight 46 out of 50 times
- Twice it went left/right instead
- Once it overshot
- Once it stayed put
- GoStraight() is 92\% reliable.
- Results:
- Mean \pm standard deviation
- Max overshoot

Frequentist Statistics

- What is the issue with this?
- Depends on the number of trials

ECE3400

Bayesian Statistics

- Educated guesses based on probability distributions, to update beliefs in the evidence of new data
- Representing all parameters as probability distributions

ECE3400

Bayesian Statistics

$$
\frac{P(B \mid A) P(A)}{P(B)}
$$

I saw a wall to the north, am I to the right or the left of the red line?

- Scenario \#1:
- Left 6 squares: 3 north wall, 3 have no north wall
- Right 6 squares: 2 north wall, 4 have no north wall
- What is the best guess?
- Left
- Scenario \#2:
- Left 6 squares: 3 north walls
- Right 12 squares: 4 north walls
- What is the best guess?
- Right

Bayesian Statistics

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

I know which side I'm on, what is the probability there is a wall to the north?

Conditional Probability

- Scenario \#1:
- $\mathrm{P}\left(\right.$ wall $_{\text {NORTH }} \mid$ left $)=3 / 6=0.5$
- $\mathrm{P}\left(\right.$ wall $_{\text {NORTH }} \mid$ right $)=2 / 6=0.33$
- Scenario \#2
- $\mathrm{P}\left(\right.$ wall $_{\text {NORTH }} \mid$ left $)=3 / 6=0.5$
- $\mathrm{P}\left(\right.$ wall $_{\text {NORTH }} \mid$ right $)=4 / 12=0.33$
- *Not interchangeable:
- $P(A \mid B) \neq P(B \mid A)$

Bayesian Statistics

$$
P(A \mid B)=\frac{\odot(B \mid A) P(A D}{P(B)}
$$

What is the probability that I am on the left side and there is a wall to my north?

- Joint Probability
- Scenario \#1
- $P\left(\right.$ left \cap wall $\left._{\text {NORTH }}\right)$
$=P($ left $) * P\left(\right.$ wall $_{\text {NORTH }}$ left $)$
$=0.5 * 0.5=0.25$
- $P\left(\right.$ right \cap wall $\left._{\text {NORTH }}\right)$
$=P$ (right) * $\mathrm{P}\left(\right.$ wall $_{\text {NORTH }}$ Iright $)$
$=0.5 * 0.33=0.17$

Bayesian Statistics

$$
P(A \mid B)=\frac{\odot(B \mid A) P(A D}{P(B)}
$$

What is the probability that I am on the left side and there is a wall to my north?

- Joint Probability
- Scenario \#1
- $P\left(\right.$ left \cap wall $\left._{\text {NORTH }}\right)$
$=P($ left $) * P\left(\right.$ wall $_{\text {NORTH }}$ left $)$
$=0.5^{*} 0.5=0.25$
- Scenario \#2
- $P\left(\right.$ right \cap wall $\left._{\text {NORTH }}\right)$
$=P$ (right) * P (wall ${ }_{\text {NORTH }} \mid$ right $)$
$=0.67 * 0.33=0.22$
- *Interchangeable:
- $P(A \cap B)=P(B \cap A)$

Bayesian Statistics

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

What is the probability that there is a wall to the north?

- Marginal Likelihood
- Scenario \#1
- $P\left(\right.$ wall $\left._{\text {NORTH }}\right)$

$$
\begin{aligned}
& =\mathrm{P}\left(\text { left } \cap \text { wall }_{\text {NORTH }}\right)+\mathrm{P}\left(\text { right } \cap \text { wall }_{\text {NORTH }}\right) \\
& =0.25+0.17=0.42
\end{aligned}
$$

- Scenario \#2
- $P\left(\right.$ wall $\left._{\text {NORTH }}\right)$
$=P\left(\right.$ left \cap wall $\left._{\text {NORTH }}\right)+P\left(\right.$ right \cap wall $\left._{\text {NORTH }}\right)$
$=0.17+0.22=0.39$

Bayesian Statistics

I saw a wall to the north, am I to the right or the left of the red line?

- Scenario \#1:
- $\mathrm{P}\left(\right.$ right \mid wall $\left._{\text {NORTH }}\right)=$??
- Known:
- Joint probability that I am on the right and there is a north wall:
- $\mathrm{P}\left(\right.$ wall $_{\text {NORTH }} \cap$ right $)=\mathrm{P}($ right $) * P\left(\right.$ wall $_{\text {NORTH }}$ | right $)$
- The opposite:
- $\mathrm{P}\left(\right.$ right \cap wall $\left._{\text {NORTH }}\right)=\mathrm{P}\left(\right.$ wall $\left._{\text {NORTH }}\right)$ * $\mathrm{P}\left(\right.$ right \mid wall $\left._{\text {NORTH }}\right)$
- $P\left(\right.$ right \cap wall $\left._{\text {NORTH }}\right)=P\left(\right.$ wall $_{\text {NORTH }} \cap$ right $)$
- $P\left(\right.$ right \mid wall $\left._{\text {NORTH }}\right)=P($ right $) * P\left(\right.$ wall $_{\text {NORTH }} \mid$ right $) / P\left(\right.$ wall $\left._{\text {NORTH }}\right)$
- $P\left(\right.$ right \mid wall $\left._{\text {NORTH }}\right)=0.5^{*} 0.33 / 0.42=0.4$
- Scenario \#2: p(right \mid wall $\left._{\text {NORTH }}\right)=0.67 * 0.33 / 0.42=0.53$

Bayesian Statistics

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

I saw a wall to the north, am I to the right or the left of the red line?

- Scenario \#1:
- $P\left(\right.$ right \mid wall $\left._{\text {NORTH }}\right)=P($ right $) * P\left(\right.$ wall $_{\text {NORTH }} \mid$ right $) / P\left(\right.$ wall $\left._{\text {NORTH }}\right)$

$$
\begin{aligned}
& \left.\square \text { P(Left | ! } \text { wall }_{\text {NORTH }}\right) \\
& \text { 园 P(Left | wall } \text { NORTH } \text {) } \\
& \left.\square \text { (Right | !wall } \text { NORTH }_{\text {NORTH }}\right) \\
& \text { (Right }
\end{aligned}
$$

ECE3400

Bayesian Statistics

- Educated guesses based on probability distributions, to update beliefs in the evidence of new data
- Representing all parameters as probability distributions

ECE3400

Bayesian Statistics

- Educated guesses based on probability distributions, to update beliefs in the evidence of new data
- Representing all parameters as probability distributions

ECE3400

Bayesian Statistics

- Educated guesses based on probability distributions, to update beliefs in the evidence of new data
- Representing all parameters as probability distributions

X is the set of possible locations x is one of these locations
y is the sensor measurement

ECE3400

Robot Motion

- Transition model
- No matter what I tell my robot to do, it makes a random move or stays!

Transition Matrix:

Probability to move from state j , to state i

X is the set of possible locations x is one of these locations y is the sensor measurement
ECE3400

Engineering

Robot Motion

- Transition model
- No matter what I tell my robot to do, it makes a random move or stays!

Engineering

Robot Motion

- Transition model
- The robot may not know where it is, but it does have a physical state

ECE3400

Robot Motion

- Transition model
- The robot may not know where it is, but it does have a physical state

ECE3400

Wall Sensor

- Sensor model
- Correct 90% of the time
- (10% misses walls; 10% sees walls that aren't there)
- Sensor output:
- [North, East, West, South]
- $\mathrm{P}($ no walls $\mid \mathrm{x})=0.1^{*} 0.9^{*} 0.9^{*} 0.1$
- $P(N \mid x)=0.9^{*} 0.9^{*} 0.9^{*} 0.1$
- $P(W \mid x)=0.1^{*} 0.9^{*} 0.9^{*} 0.9$
- $P(S \mid x)=0.1^{*} 0.9^{*} 0.1^{*} 0.1$
- $P(E \mid x)=0.1^{*} 0.9^{*} 0.1^{*} 0.1$
- ...
- $\mathrm{P}(\mathrm{NW} \mid \mathrm{x})=0.9 * 0.9 * 0.9 * 0.9$

X is the set of possible locations x is one of these locations y is the sensor measurement

ECE3400

Wall Sensor

- Sensor model
- Correct 90\% of the time
- ...Compute the likelihood of an observation from each state, $\mathrm{P}(\mathrm{y} \mid \mathrm{X})$

a robot state (x)

$P(y \mid X)$

X is the set of possible locations x is one of these locations
y is the sensor measurement

Combine the Motion and Sensor Models

$$
\begin{aligned}
& P\left(X_{t+1} \mid y_{1: t+1}\right)=\underset{\substack{\text { Normalize if } \\
\text { necessary }} \underset{\text { Correct prediction }}{\alpha} P\left(y_{t+1} \mid X_{t+1}\right) \sum_{x t} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid y_{1: t}\right)}{\uparrow} \underset{\substack{ \\
\uparrow}}{\substack{\text { Previous State Estimate }}} \\
& \text { by weighing in the } \\
& \text { measurement } \\
& \text { Transition Model } \\
& \text { Predict probability } \\
& \text { distribution after action }
\end{aligned}
$$

Combine the Motion and Sensor Models

$$
P\left(X_{t+1} \mid y_{1: t+1}\right)=\underset{\substack{\uparrow \\ \text { Normizize if } \\ \text { necessary }}}{\alpha} P\left(y_{t+1} \mid X_{t+1}\right) \sum_{x t} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid y_{1: t}\right)
$$

Combine the Motion and Sensor Models

> Can you do better? by weighing in the measurement
> Transition Model
> Predict probability distribution after action

$$
\left.\begin{array}{c}
P\left(X_{t+1} \mid y_{1: t+1}\right)=\alpha P\left(y_{t+1} \mid X_{t+1}\right) \sum_{x t} P\left(X_{t+1} \mid x_{t}, u_{t-1}\right) P\left(x_{t} \mid y_{1: t}\right) \\
\text { How would you actually do that? }
\end{array} \begin{array}{c}
\text { Factor in Input } \\
\text { Predict probability } \\
\text { distribution after } \\
\text { deliberate action }
\end{array}\right)
$$

ECE3400

Combine the Motion and Sensor Models

$$
P\left(X_{t+1} \mid y_{1: t+1}\right)=\underset{\substack{\text { Normalize if } \\ \text { necessary }}}{\alpha} P\left(y_{t+1} \mid X_{t+1}\right) \sum_{\substack{\text { Correct prediction } \\ \text { by weighing in the } \\ \text { measurement }}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid y_{1: t}\right)
$$

Improved Transition Model

Combine the Motion and Sensor Models

$$
\begin{aligned}
& P\left(X_{t+1} \mid y_{1: t+1}\right) \underset{\substack{\text { Normalize if } \\
\text { necessary }} \underset{\sim}{\sim} \underset{\text { Correct prediction }}{a} P\left(y_{t+1} \mid X_{t+1}\right) \sum_{x t} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid y_{1: t}\right)}{\substack{\text { Previous State Estimate }}} \\
& \text { Correct prediction } \\
& \text { by weighing in the } \\
& \text { measurement } \\
& \text { Transition Model } \\
& \text { Predict probability } \\
& \text { distribution after action }
\end{aligned}
$$

Improved Transition Model

What else could you do to localize faster?

- Deliberately move in directions that give you more information

Summary

- Use temporal consistency between observations that are poor estimates individually
- Localization can work with...
- ...completely random motion
- ...noisy sensors
- (returns a probability of where you are)
- This general approach works with more complicated, states, observation models, and transition models.

$$
\begin{aligned}
P\left(X_{t+1} \mid y_{1: t+1}\right) & =P\left(y_{t+1} \mid X_{t+1}\right) \sum_{x t} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid y_{1: t}\right) \\
\text { New estimate } & =\text { Factor in observation } \quad \text { Predict } \quad \text { Old estimate }
\end{aligned}
$$

Go Build Robots!

