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Classes of Interest:
ECE 3100: Intro to Probability and Inference
ECE 5412: Bayesian Estimation and Learning
MAE 4180/5780, CS3758: Autonomous Mobile Robots

ECE3400: Intelligent Physical Systems

Probability and Localization
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Reliability
• How well does your robot go straight?
• How well does your robot turn?
• How well does your wall sensor detect walls?

• …Are you really sure it works perfectly?



Maze Mapping Robot
Line Following Robot
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Nothing’s prefect!

IR Sensors

PID
+

-

Move
Robot

MotionSearch 
(or wall following)

Über-
intelligence

Simultaneous Localization And Mapping

Wall Sensors

Grid traversal
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Reliability
• How well does the robot go straight?

• Describe your setup:
• Move straight between two junctions 50 times in a row

• Results:
• It went straight 46 out of 50 times
• Twice it went left/right instead
• Once it overshot
• Once it stayed put
• GoStraight() is 92% reliable.

• Results:
• Mean ± standard deviation
• Max overshoot

Frequentist Statistics
• What is the issue with this?

• Depends on the number of trials

461 1

1

1



conditional probability

prior

posterior

likelihood

marginal likelihood
(constant)

• Educated guesses based on probability distributions, to update beliefs in the evidence 
of new data

• Representing all parameters as probability distributions

Bayesian Statistics



I saw a wall to the north, am I to the right or the left of the red line?

• Scenario #1:
• Left 6 squares: 3 north wall, 3 have no north wall
• Right 6 squares: 2 north wall, 4 have no north wall

• What is the best guess?
• Left

• Scenario #2:
• Left 6 squares: 3 north walls
• Right 12 squares: 4 north walls

• What is the best guess?
• Right

Bayesian Statistics

0

0

0

0



I know which side I’m on, what is the probability there is a wall to the north?

Conditional Probability
• Scenario #1:

• P(wallNORTH|left) = 3/6 = 0.5
• P(wallNORTH|right) = 2/6 = 0.33

• Scenario #2
• P(wallNORTH|left) = 3/6 = 0.5
• P(wallNORTH|right) = 4/12 = 0.33

• *Not interchangeable:
• P(A|B) ≠ P(B|A)

Bayesian Statistics

0

0

0

0



What is the probability that I am on the left side and there is a wall to my north?
• Joint Probability
• Scenario #1

• P(left ꓵ wallNORTH) 
= P(left) * P(wallNORTH|left) 
= 0.5*0.5 = 0.25

• P(right ꓵ wallNORTH) 
= P(right) * P(wallNORTH|right) 
= 0.5*0.33 = 0.17

Bayesian Statistics

0

0

0

0



What is the probability that I am on the left side and there is a wall to my north?
• Joint Probability
• Scenario #1

• P(left ꓵ wallNORTH) 
= P(left) * P(wallNORTH|left) 
= 0.5*0.5 = 0.25

• Scenario #2
• P(right ꓵ wallNORTH) 

= P(right) * P(wallNORTH|right) 
= 0.67*0.33 = 0.22

• *Interchangeable:
• P(A ꓵ B) = P(B ꓵ A)

Bayesian Statistics

0

0

0

0



What is the probability that there is a wall to the north?
• Marginal Likelihood
• Scenario #1

• P(wallNORTH) 
= P(left ꓵ wallNORTH) + P(right ꓵ wallNORTH) 
= 0.25 + 0.17 = 0.42

• Scenario #2
• P(wallNORTH)

= P(left ꓵ wallNORTH) + P(right ꓵ wallNORTH) 
= 0.17 + 0.22 = 0.39

Bayesian Statistics

0

0

0

0



I saw a wall to the north, am I to the right or the left of the red line?
• Scenario #1:
• P(right|wallNORTH) = ??
• Known:

• Joint probability that I am on the right and there is a north wall:
• P(wallNORTH ꓵ right) = P(right) * P(wallNORTH | right) 

• The opposite:
• P(right ꓵ wallNORTH) = P(wallNORTH) * P(right | wallNORTH)

• P(right ꓵ wallNORTH) = P(wallNORTH ꓵ right)
• P(right | wallNORTH) = P(right) * P(wallNORTH | right) / P(wallNORTH)
• P(right | wallNORTH) = 0.5*0.33/0.42 = 0.4

• Scenario #2: p(right | wallNORTH) = 0.67*0.33/0.42 = 0.53

Bayesian Statistics

0

0
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Bayesian Statistics

P(Left | !wallNORTH)
P(Left | wallNORTH)
(Right | !wallNORTH)
(Right|wallNORTH)

Sum to 1

Pr
ob

ab
ili

ty
0

0

I saw a wall to the north, am I to the right or the left of the red line?
• Scenario #1:

• P(right | wallNORTH) = P(right) * P(wallNORTH | right) / P(wallNORTH)

0.25 0.25
0.17

0.33



conditional probability

prior

posterior

likelihood

marginal likelihood
(constant)

• Educated guesses based on probability distributions, to update beliefs in the evidence 
of new data

• Representing all parameters as probability distributions

Bayesian Statistics



P 𝒙𝒙|𝒚𝒚 = 𝑷𝑷 𝒚𝒚|𝒙𝒙 �𝑷𝑷(𝒙𝒙)
𝑷𝑷 𝒚𝒚

What we want

probability of being 
in this location

how likely the 
measurement is

• Educated guesses based on probability distributions, to update beliefs in the evidence 
of new data

• Representing all parameters as probability distributions

Bayesian Statistics

what we have

X is the set of possible locations
x is one of these locations
y is the sensor measurement



P 𝑿𝑿|𝒚𝒚 = 𝑷𝑷 𝒚𝒚|𝑿𝑿 �𝑷𝑷(𝑿𝑿)
𝑷𝑷 𝒚𝒚

What we want

probability of being 
in each location

how likely the 
measurement is

• Educated guesses based on probability distributions, to update beliefs in the evidence 
of new data

• Representing all parameters as probability distributions

Bayesian Statistics

what we have

X is the set of possible locations
x is one of these locations
y is the sensor measurement

→1/P(y) = α
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Robot Motion

• Transition model
• No matter what I tell my robot to do, it makes a random move or stays!

X is the set of possible locations
x is one of these locations
y is the sensor measurement

j 
[all locations]

Probability to move 
from state j, to state i

Transition Matrix:

i [all locations]



Robot Motion

X is the set of possible locations
x is one of these locations
y is the sensor measurement

• Transition model
• No matter what I tell my robot to do, it makes a random move or stays!

p0 p1 p2 

p3 … p10 … p100



Robot Motion

X is the set of possible locations
x is one of these locations
y is the sensor measurement

• Transition model
• The robot may not know where it is, but it does have a physical state

p0 p1 p2 

p3 … p10 … p100



p0 

Robot Motion

X is the set of possible locations
x is one of these locations
y is the sensor measurement

• North = Wall
• East = No Wall
• South = No Wall
• West  = No Wall

p3 

• Transition model
• The robot may not know where it is, but it does have a physical state



Wall Sensor

X is the set of possible locations
x is one of these locations
y is the sensor measurement

• Sensor model
• Correct 90% of the time 
• (10% misses walls; 10% sees walls that aren’t there)

• P(no walls | x) = 
• P(N | x) =
• P(W | x ) = 0.1*0.9*0.9*0.9
• P(S | x) = 0.1*0.9*0.1*0.1
• P(E | x) = 0.1*0.9*0.1*0.1
• …
• P(NW | x) = 0.9*0.9*0.9*0.9

x

• Sensor output: 
• [North, East, West, South]

0.1*0.9*0.9*0.1
0.9*0.9*0.9*0.1

highest probability



Wall Sensor

X is the set of possible locations
x is one of these locations
y is the sensor measurement

a robot state (x) P(y|X)

• Sensor model
• Correct 90% of the time
• …Compute the likelihood of an observation from each state, P(y|X)
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Combine the Motion and Sensor Models

𝑃𝑃 𝑦𝑦𝑡𝑡+1 𝑋𝑋𝑡𝑡+1)

Correct prediction 
by weighing in the 

measurement

𝑃𝑃 𝑋𝑋𝑡𝑡+1 𝑦𝑦1:𝑡𝑡+1 ) =
Normalize if 
necessary

𝛼𝛼

Previous State Estimate

𝑃𝑃 𝑥𝑥𝑡𝑡 𝑦𝑦1:𝑡𝑡)

Transition Model
Predict probability 

distribution after action

𝑃𝑃 𝑋𝑋𝑡𝑡+1 𝑥𝑥𝑡𝑡)�
𝑥𝑥𝑡𝑡

No Observations 
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Combine the Motion and Sensor Models

𝑃𝑃 𝑦𝑦𝑡𝑡+1 𝑋𝑋𝑡𝑡+1)

Correct prediction 
by weighing in the 

measurement

𝑃𝑃 𝑋𝑋𝑡𝑡+1 𝑦𝑦1:𝑡𝑡+1 ) =
Normalize if 
necessary

𝛼𝛼

Previous State Estimate

𝑃𝑃 𝑥𝑥𝑡𝑡 𝑦𝑦1:𝑡𝑡)

Transition Model
Predict probability 

distribution after action

𝑃𝑃 𝑋𝑋𝑡𝑡+1 𝑥𝑥𝑡𝑡)�
𝑥𝑥𝑡𝑡

Observations 

…

In two steps, 
we homed in on 
where we are!
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Improved Transition Model

𝑃𝑃 𝑦𝑦𝑡𝑡+1 𝑋𝑋𝑡𝑡+1)

Correct prediction 
by weighing in the 

measurement

𝑃𝑃 𝑋𝑋𝑡𝑡+1 𝑦𝑦1:𝑡𝑡+1 ) =
Normalize if 
necessary

𝛼𝛼

Previous State Estimate

𝑃𝑃 𝑥𝑥𝑡𝑡 𝑦𝑦1:𝑡𝑡)

Transition Model
Predict probability 

distribution after action

𝑃𝑃 𝑋𝑋𝑡𝑡+1 𝑥𝑥𝑡𝑡)�
𝑥𝑥𝑡𝑡

𝑃𝑃 𝑦𝑦𝑡𝑡+1 𝑋𝑋𝑡𝑡+1)𝑃𝑃 𝑋𝑋𝑡𝑡+1 𝑦𝑦1:𝑡𝑡+1 ) = 𝛼𝛼 𝑃𝑃 𝑥𝑥𝑡𝑡 𝑦𝑦1:𝑡𝑡)𝑃𝑃 𝑋𝑋𝑡𝑡+1 𝑥𝑥𝑡𝑡,𝑢𝑢𝑡𝑡−1)�
𝑥𝑥𝑡𝑡

Combine the Motion and Sensor Models

Factor in Input
Predict probability 
distribution after 
deliberate action

Can you do better?

How would you actually do that?
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Improved Transition Model

𝑃𝑃 𝑦𝑦𝑡𝑡+1 𝑋𝑋𝑡𝑡+1)

Correct prediction 
by weighing in the 

measurement

𝑃𝑃 𝑋𝑋𝑡𝑡+1 𝑦𝑦1:𝑡𝑡+1 ) =
Normalize if 
necessary

𝛼𝛼

Previous State Estimate

𝑃𝑃 𝑥𝑥𝑡𝑡 𝑦𝑦1:𝑡𝑡)

Transition Model
Predict probability 

distribution after action

𝑃𝑃 𝑋𝑋𝑡𝑡+1 𝑥𝑥𝑡𝑡)�
𝑥𝑥𝑡𝑡

Combine the Motion and Sensor Models

Before After
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Improved Transition Model

𝑃𝑃 𝑦𝑦𝑡𝑡+1 𝑋𝑋𝑡𝑡+1)

Correct prediction 
by weighing in the 

measurement

𝑃𝑃 𝑋𝑋𝑡𝑡+1 𝑦𝑦1:𝑡𝑡+1 ) =
Normalize if 
necessary

𝛼𝛼

Previous State Estimate

𝑃𝑃 𝑥𝑥𝑡𝑡 𝑦𝑦1:𝑡𝑡)

Transition Model
Predict probability 

distribution after action

𝑃𝑃 𝑋𝑋𝑡𝑡+1 𝑥𝑥𝑡𝑡)�
𝑥𝑥𝑡𝑡

Combine the Motion and Sensor Models

What else could you do to localize faster?
• Deliberately move in directions that give you more information



𝑃𝑃 𝑦𝑦𝑡𝑡+1 𝑋𝑋𝑡𝑡+1) �
𝑥𝑥𝑡𝑡

𝑃𝑃 𝑋𝑋𝑡𝑡+1 𝑥𝑥𝑡𝑡) 𝑃𝑃 𝑥𝑥𝑡𝑡 𝑦𝑦1:𝑡𝑡)𝑃𝑃 𝑋𝑋𝑡𝑡+1 𝑦𝑦1:𝑡𝑡+1 ) =

Old estimatePredictFactor in observationNew estimate   = 

Summary
• Use temporal consistency between observations that 

are poor estimates individually
• Localization can work with…

• …completely random motion
• …noisy sensors
• (returns a probability of where you are)

• This general approach works with more complicated, 
states, observation models, and transition models.
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